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Chapter 1

Introduction

Sight is certainly one of the main senses of human beings. An enormous amount of infor-
mation from our surroundings is obtained by our eyes, which are able to detect the color
and the intensity of visible light, with a high angular resolution. Although this amount of
information is contained in the light we can perceive, the mechanisms which lead to the
color of an object are not apparent. What differentiates the blue from the sea of a lagoon,
from a clear summer sky, or from your favorite land’s1 flag? The first one is due to reflec-
tion, the second to single scattering, and the third to multiple scattering (in addition to an
absorption/emission mechanism).

1.1 Elastic interaction of light and matter

1.1.1 Single scattering

Through homogeneous media, such as vacuum between the sun and the earth, air around
us, or the glass of windows, light propagates in a straight line, or as a ray, with a single
speed. This straight propagation is disturbed by inhomogeneities, or a change in the speed
of light. The speed of light inside a material is usually specified through the refractive index
n of this material. The refractive index is the ratio of the speed of light in vacuum and inside
the material. An interface between air and water for example gives rise to refraction, where
the direction of light changes when propagating between two media of different refractive
indices. An interface between air and a metal typically gives rise to a strong reflection
of the light, of which we make everyday use with mirrors. Apart from a clear and planar
interface between two otherwise homogeneous materials, examples of inhomogeneities are
single atoms, molecules, droplets of water, glass spheres, or sugar powder.

There are two equivalent descriptions of the inhomogeneity of a medium. The refrac-
tive index can be described as a continuous variable, which varies with position. A physical
example matching this description is the air above a fire, whose temperature fluctuations
lead to density fluctuations of the air and to refractive index fluctuations. The propagation
of light through the air above a fire is disturbed and makes an image seen through this air

1The French and Dutch flags are good examples, both containing the blue color.
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a b

c d

Figure 1.1: Cartoon of the scattering function of several scatterers depicted in grey, under illumi-
nation of a plane wave incident in the direction of the arrow. In (a), a Rayleigh scatterer, almost
isotropic2. In (b), a Mie sphere, scattering preferentially in the forward direction. In (c) and (d), a
non-spherical scatterer, whose scattering function depends on the orientation of the scatterer.

shudder. The refractive index can also be described as constant and homogeneous, within
one material. The inhomogeneity then comes from inclusions of one material into another
material of different refractive index. Mist is a region of air filled with very small water
droplets, through which the vision is blurred. In this thesis, the description is used of a
homogeneous material filled with inclusions of another material, which we call scatter-
ers. The interaction of light with a scatterer is a scattering event, and it is in this thesis
considered to be elastic: the wavelength of the light is not changed by scattering.

The regime in which light interacts only once with a scatterer is called single scattering.
The main property of a scatterer can be specified as its scattering cross sectionσsc, which
is the total intensity of light scattered by this scatterer, normalized to a surface. Three dif-
ferent categories of single scattering are usually described, depending on the size of the
scatterer: Rayleigh scattering, Mie scattering, and geometrical optics. Rayleigh scatter-
ing [1–4] describes the interaction of light with scatterers of size much smaller than the
wavelength of lightλ, such as molecules or very fine powders. The scattering function, or
the angular distribution of light after scattering, is isotropic in the long wavelength limit,
as schematized in Fig. 1.1a: a small scatterer is an isotropic scatterer2. Rayleigh scatter-
ing is characterized by the dependence of the scattering cross section on the inverse of the
fourth power of the wavelength of light:σsc ∝ 1/λ4. In the Rayleigh regime, the scattering
of light is much more efficiently in the blue part of the visible spectrum than in the red
part. The atmosphere contains very small scatterers, like molecules or aerosols, which give
the blue color to the light scattered from the sky. The red sun at dawn and sunset is the
transmitted light through a thick layer of atmosphere, where the blue part of the spectrum
has been more efficiently scattered out than the red part. The limit of an infinitely-small
scatterer compared to the wavelength of light is called the point scatterer and is the choice
model for theories beyond single scattering, an example of which is given in chapter 2.

2The scattering function of a Rayleigh scatterer has in fact a small angular dependence, depending on the
polarization of the incident beam. Although the scattering function is not completely isotropic, it is still symmetric
between forward and backward scattering.
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1.1 Elastic interaction of light and matter

The geometrical-optics limit is used for scatterers of size much larger than the wave-
length of light, where the well-known reflection and refraction (Snell’s law) phenomena are
sufficient to describe the propagation of light. In this small-wavelength limit, the scattering
cross section of a scatterer equals twice its physical cross section. In geometrical optics, a
ray stays a ray after scattering (i.e., after reflection or refraction).

In the intermediate category, when the size of the scatterer is close to the wavelength of
light, only the spherical or cylindrical scatterer can be exactly solved. Mie scattering [3–5]
describes the interaction of light with a sphere of arbitrary size,i.e., a Mie sphere. In the
long and short wavelength limit, Mie scattering catches up with the Rayleigh scattering and
geometrical optics respectively. A sphere of size close to the wavelength of light exhibits
resonances at discrete wavelengths where the scattering is very efficient. At these reso-
nances3, the scattering cross section of the Mie sphere greatly exceeds its physical cross
section. The scattering function of a Mie sphere depends very much on the wavelength
of light, whether or not a resonance of the sphere is excited. Mie spheres typically scat-
ters more in the forward direction, as depicted in Fig. 1.1b, and are therefore anisotropic
scatterers.

In the case of a non-spherical (and non-cylindrical) scatterer of size close to the wave-
length of light, either an analytical solution for a collection of point scatterers modeling
the real structure or a numerical solution for the exact scatterer is necessary. The intensity
scattered from a non-spherical scatterer depends on angle (like the Mie sphere in Fig. 1.1b)
but also on its orientation, unlike the Mie sphere (Figs. 1.1c and 1.1d depict the same
non-spherical scatterer, in two different orientations). A non-spherical scatterer also has
resonances, depending on its shape and size [6].

The characteristic quantity of a single scatterer is its scattering cross sectionσsc. The
characteristic quantity of a collection of scatterers of densityρ is called the scattering mean
free path̀ sc, and is the average distance between two consecutive scattering events. The
intensity of the incident beam decays exponentially with the penetration depth inside the
scattering material, with a typical decay length`sc. In the case of independent scattering,
the scattering mean free path, to first order, is equal to

`sc =
1

ρσsc
. (1.1)

The single-scattering regime holds when the sizeL of the region of space where scatterers
are present is smaller than the scattering mean free path`sc.

Note that if another effect, such as absorption, influences the propagation of light inside
the material, the intensity of the incident beam decays according to the extinction length
`ex. The extinction length is related to the absorption length`a as`−1

ex = `
−1
a + `

−1
sc .

1.1.2 Multiple scattering and diffusion

In the limit where`sc < L, the single-scattering approximation breaks down, and multi-
ple scattering occurs. At each scattering, the direction of light changes, according to the

3The so-called whispering-gallery modes are modes which can be described as rays at grazing incidence
inside a large sphere, totally internally reflected by its surface. Such modes have very low intrinsic losses and are
effectively very good cavity modes, where the light travels around inside the sphere for a long time.
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Introduction

scattering function. Setting the wave nature of light aside, the propagation of light through
a multiple-scattering medium can be described as a random walk. The average step size
of this random walk is̀ sc and the possible directions in which each following step can be
performed are set by the scattering function of the scatterer. Depending on the scattering
function, the direction of light is fully randomized after one or more`sc. A Mie sphere
for example mainly scatters in the forward direction, and many scattering events are nec-
essary to randomize the direction of light. Instead of a random walk with step size`sc and
anisotropic scattering function, an isotropic random walk can be described. The transport
mean free path̀ is defined as the average distance after which the intensity distribution is
isotropic. The transport mean free path is the characteristic length in the regime of multiple
scattering. In the absence of interference,` becomes equal to the Boltzmann mean free
path`B,

`B =
`sc

1− 〈cosθ〉
, (1.2)

where〈cosθ〉 is the average cosine of the scattered angle, weighted by the scattering func-
tion. In the Rayleigh regime, the incident light is scattered symmetrically in the forward
and in the backward direction, therefore〈cosθ〉 = 0, and`B = `sc. Otherwise, the scatter-
ers, such as a Mie sphere, scatter more in the forward than in the backward direction, so
that〈cosθ〉 > 0 and`B > `sc. In the regime4 where`sc ≤ ` � L, light is said to be diffuse,
the energy density of lightW follows a diffusion equation

∂W
∂t
− D∇2W = S, (1.3)

whereD is the diffusion constant, characteristic of the speed at which light diffusely spreads
out. The first part of chapter 2 gives a theoretical ground to the diffusion equation.

The diffusion equation is a very general and practical description of numerous complex
systems in physics. The particles of a gas, the heat in solids [7], the neutrons in a nuclear
reactor [8, 9], the coins in the euro zone all follow a diffusion equation. The diffusion of
light has the following characteristic property: because light entering a diffusive material is
scattered numerous times, the light emerging from the material is an average of the color of
all the incident light, whatever the incident direction. Since ambient light usually contains
all colors of the visible spectrum,e.g., from the sun or an incandescent lamp, the diffusive
material appears white. All white materials owe their color to multiple light scattering.
Famous examples of diffusive materials include clouds, white paint, ivory, snow, the fur
of polar bears and paper. A kitchen typically gives the opportunity of observing, and even
making, diffusive materials: milk, flour, cauliflower (see cover), beer foam or salt. Refined
sugar comes in two forms, either sugar powder or candy sugar (see cover, respectively
bottom left and right). Both forms of sugar are crystalline and identical except for the size
of the crystals. Candy sugar is a large and transparent crystal. Sugar powder is a collection
of small, but still transparent, crystals, whose surfaces each scatter light a little. Grinding a
candy sugar into a powder turns it from transparent to a diffusive white. Similarly, the white
of an egg is, mainly, transparent. After vigorous whipping, small air bubbles are introduced
within a backbone made of the proteins of the white of the egg [10]. The whipped white
becomes a white diffusive material (see cover, center left).

4The interference effects are here still neglected, but are detailed further on, in section 1.2
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1.2 Interference in multiple scattering of light
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Figure 1.2: Possible paths for the light in a random material. In (a), two pathsi and j lead from A
to B. In (b), two distinct pathsi and j lead from A back to A,i∗ is the time reverse of pathi.

In the presence of a small but non-negligible absorption, for` � `a � L, the diffu-
sion equation can be generalized, by adding a negative term next to the source in Eq. 1.3,
as(−W/τa). The absorption timeτa takes into account the diffusion speed asτa ≡ L2

a/D.
The absorption length̀a is the path length after which light is absorbed. The diffuse ab-
sorption lengthLa is the average distance light propagates diffusively before being ab-
sorbed [11]:

La =

√
``a

3
. (1.4)

Inside a diffusive and absorbing material, the diffuse absorption length is the penetration
depth of the diffuse light.

1.2 Interference in multiple scattering of light

Although the diffusion equation is very general and describes the intensity of light in usual
situations, the wave nature of light makes its propagation much more interesting than just
diffusion.

In order to look at interference effects, the electromagnetic field has to be propagated,
instead of the intensity. The intensity at a certain point is the norm squared of the field at
this point. In Fig. 1.2a, two possible paths for light to travel between two distinct points A
and B in a multiple-scattering medium are plotted. The intensity of lightIA→B at the point
B, due to light coming from the point A is the norm squared of the sum of the fields of all
possible paths from A to B:

IA→B ≡

∑
i

Ei

 ∑
j

E∗j

 =∑
i

EiE
∗
i +

∑
i

∑
j,i

EiE
∗
j =

∑
i

I i + interference, (1.5)

whereEi and I i are respectively the field and intensity of light propagating only along
the pathi. The sum of intensities along all the paths leads to the diffusion result, as in
Eq. 1.3. The interference term can not in practice be calculated for a single configuration
of the distribution of scatterers, but statistical properties (intensity distributions or spatial
correlations for example) can be derived [12–15].
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1.2.1 Speckle

In statistical physics, the self-averaging property of most random variables is primordial.
Let us consider a random variableα with a probability distribution of finite variance (or
mean-square). The central limit theorem states that the average overN realizations of this
random variable approaches asymptotically the averageᾱ of the distribution function as

1
N

N∑
i

αi = ᾱ +O

(
1
√

N

)
, (1.6)

whereO(x) is of the same order asx. If the distribution of the averages overN realizations
of the random variable tends to a Dirac delta function forN → ∞, the random variable
is called self-averaging. In practice5, this self-averaging means that the average overN
realizations of a random variable tends to the average of its distributionᾱ.

The intensityI i along a pathi can be described as a random variable, if the scatterers are
independent along each path. The intensity being only positive, its average does not vanish.
The sum of intensities

∑
I i in Eq. 1.5 therefore approaches its average valueĪ i timesN. The

intensity without interferences is self-averaging. The fieldEi , on the other hand, is still a
random variable, but in the complex plane: both amplitude and phase are random. The
probability distribution of the amplitude follows the distribution for the intensity, but the
probability distribution of the phase is constant: there is no preferential phase for the field
from all the different paths through independent scatterers. The average value of the field
Ē is therefore 0 and the fluctuationsO(1/

√
N) in Eq. 1.6 dominate the average overN

fields Ei : the field is not self-averaging. The intensityIA→B, square of the average over
N fields, does not approach its average valueĪ i , even for an infinite numberN of paths.
The sum overN realizations of a random variable of average 0 is of orderN/

√
N. The

double sum in Eq. 1.5 is therefore of order(N/
√

N)2 = N, i.e., the same order as the sum
of intensities

∑
I i . The interference term in Eq. 1.5 is therefore always of the same order

as the diffuse intensity term, and either positive or negative. The intensityIA→B therefore
fluctuates with each realization of theN paths. This fluctuation has a contrast of 100%,i.e.,
both constructive interference of high intensity and destructive interference with intensity
0 are realized. This large fluctuation of the intensity of multiply-scattered waves with the
disorder realization, or the position of point B, is called speckle. A pattern of bright and
dark spots is typical of the light from a coherent source, scattered by a disordered sample,
as can be seen from Fig. 1.3a.

By averaging over disorder6, i.e., averaging over multiple realizations of the scatterers
distribution, the speckle pattern disappears, and only the diffuse intensity is recovered. The
ensemble-averaged intensity is a self-averaging quantity whereas the intensity itself is not.

1.2.2 Enhanced backscattering

The ensemble-averaged intensity from a medium with multiple scattering does not present
the typical fluctuations of speckles, but interference effects still remain. Instead of looking

5The stricter condition for the self-averaging, in terms of the Dirac delta function, is in particular necessary in
the case of slowly-decaying distributions, such as Lévy distributions, whose moments are not finite [16].

6Also called ensemble averaging.
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1.2 Interference in multiple scattering of light

ba

Figure 1.3: Angular-resolved backscattered intensity from a colloid of polystyrene spheres. In (a),
no average over disorder realizations is done, only the speckle pattern is seen. In (b), the backscat-
tered intensity is collected while the Brownian motion of the colloids average over the disorder re-
alizations: the enhanced backscattering cone appears as a brighter spot in the center of the image.
Scale bars = 5 mrad. Courtesy of Wouter Peeters.

at the propagation from A to B, as in Fig. 1.2a, the propagation of a wave from A back to
itself IA→A is considered, as sketched in Fig. 1.2b. In this case, each non-trivial7 path has a
distinct time-reversed path, such asi andi∗ in Fig. 1.2b. The ensemble-averaged intensity is

〈IA→A〉 ≡

〈∑
i

Ei

 ∑
j

E∗j

〉 = 〈∑
i

EiE
∗
i

〉
+

〈∑
i

EiE
∗
i∗

〉
+

〈∑
i

∑
j,i,i∗

EiE
∗
j

〉

'

〈∑
i

EiE
∗
i

〉
+

〈∑
i

EiE
∗
i∗

〉
= 2

〈∑
i

I i

〉
, (1.7)

where the ensemble-average of fields from pathj , i, i∗ is 0 for independent scatterers. The
fields from the time-reversed pathsi and i∗ are equal, provided the time-reversal symme-
try is not broken [17]. Time-reversed paths always interfere constructively, and therefore
double the intensity of light returning to the origin A, compared to the case when no inter-
ference is present.

If the point A is not inside the multiple-scattering medium, but is outside, in the far
field, the factor 2 increase in intensity of〈IA→A〉 compared to〈IA→B〉 leads to the so-called
coherent or enhanced backscattering (EBS). In the exact backscattered direction, where
the incident and outgoing wave vectors are opposite, the interference of the time-reversed
paths is fully constructive and the intensity is twice the diffusion expectation. In practice,
the EBS is a cone of light, on top of the diffuse background, as showed in Fig. 1.3b. At
exact backscattering (in the center of Fig. 1.3b), a multiple-scattering sample reflects up
to twice as much intensity as outside the EBS cone. The EBS cone is characteristic of the
multiple scattering of waves, and its width is related to the two length scales involved,`
andλ respectively, asλ/`. The EBS cone is fully derived and described in section 2.6.

1.2.3 Anderson localization

The constructive interference of time-reversed paths leads to a more dramatic effect than the
EBS. The higher intensityIA→A compared toIA→B means that the probability of a photon

7A trivial path is here meant as only containing one scattering event, before coming back to A.
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to return to its original position is larger than to diffuse away. In a material in which the
interference effects are dominant,i.e., where the mean free path is close to the wavelength
of light, the higher returning probability inhibits the propagation of light [18]. Light is said
to be localized when the diffuse propagation disappears:D = 0, or equivalentlỳ = 0. The
transport mean free path̀is renormalized due to interference and therefore is not equal to
the Boltzmann mean free path`B in the case of waves. In a localizing medium, the energy
density of light decreases exponentially with the distancer to the source,

W ∝ exp(−r/ξ), (1.8)

whereξ is the localization length, or the typical length in which light is localized.
The concept of localization was first introduced by Anderson [19] in the case of random

lattices (an amorphous metal for example) which inhibit the propagation of electrons. Later,
localization was generalized to classical waves [20, 21], which opened the path toward
Anderson localization of light.

In less than 3 dimensions (3D), any amount of disorder localizes the wave, provided
the limiting effects (like the finite thickness of the material, or absorption) are negligible
[22, 23]. In 3D, Anderson localization is a phase transition induced by disorder. The
transition from the propagating to the localized (` = 0) state is expected to happen at
the so-called Ioffe-Regel [24–26] criterion:

k`B ' 1, or equivalentlyk`sc ' 1 for isotropic scatterers. (1.9)

Apart from the difficult-to-achieve Ioffe-Regel criterion, Anderson localization of light
remains elusive in 3D because of the always present, although usually negligible, optical
absorption. Absorption introduces a cutoff in the distribution of path-length for light in
a multiple-scattering medium. The diffuse absorption lengthLa therefore breaks down
localization [20, 27] ifξ > La. In addition, absorption of light in a multiple-scattering
medium can easily be mistaken for Anderson localization. Indeed, the exponential decay
of the energy density with distance from the source is as characteristic of localization as it
is of absorption. Absorption and localization display similar effects on the EBS cone, as is
detailed in section 2.6 and chapter 5. Dynamic diffusion [28] measurements and speckle
statistics [29,30] are expected to distinguish absorption from localization in a 3D medium.

1.3 On order and disorder

In this section, a non-exhaustive review of the wide range of interests in multiple scattering
is presented, with an emphasis in optics. The field of multiple scattering presents two
limiting cases. On the one hand, the scatterers can be arranged in an ordered, crystalline,
structure. On the other hand, the distribution of scatterers can be random, corresponding
to a completely amorphous, or disordered, material. Practical implementations of multiple
scattering materials always lie somewhere in between these two extremes.

The analogy between electrons and photons, which initiated the search for Anderson
localization of light [20, 21] also led to the concept of photonic crystals [31, 32]. Photonic
crystals are the equivalent for photons of what the semiconductors are for electrons [33]: a
material with a 3D periodic modulation of the refractive index, of period close to the wave-
length of light. As it happens in the case of electrons in a semiconductor, a photonic crystal

16



1.3 On order and disorder

forbids the propagation of light in a range of wavelengths: a photonic band gap. The field
of photonic crystals quickly expanded due to the expectations of numerous applications of
photonic band gaps materials, inspired by semiconductor electronics [34]. Switching the
properties of photonic crystals allows a very fast and active control over the propagation of
light [35,36]. A qualitative difference between electrons and photons is the particle conser-
vation. Photons can be absorbed and emitted, in opposition to electrons. Photonic crystals
have been expected [31], and later shown [37,38], to inhibit, or more generally control, the
spontaneous emission of embedded light sources. One of the most successful scheme to
produce a large-scale 3D photonic crystal is the so-called ‘inverse opal’ [39, 40], where a
crystallized colloid of polystyrene spheres (an opal) is inverted in order to obtain a crystal
of air-spheres within a backbone of high refractive index.

The photonic crystals are in fact a very useful environment in which to have disor-
der. Close to the edge of a photonic band gap, the wave vectork of light is reduced, and
therefore makes the Ioffe-Regel criterion for Anderson localization,k`B ' 1, more easily
attainable [32]. Adding a defect to an otherwise perfect photonic crystal opens an allowed
state within the photonic band gap [41–43]. Such a ‘nano-box’ localizes light within the
photonic band gap. The light escaping photonic crystals of macroscopic size has been
shown to be diffuse but strongly directional [44, 45], indicating that even state-of-the-art
photonic crystals have uncontrolled disorder (` ∼ 20 µm). Another example of medium
combining both disorder and order characteristics is the quasi-crystal: a layered structure
whose variable layer thickness follows for example a Fibonacci sequence. In such aperi-
odic but deterministic structure, both photonic stop gaps and 1D (quasi-)localization effects
have been observed [46–48].

The purely disordered limit of multiple scattering is also flourishing. The diffusion
approximation, and its generality, is known since the end of the 18th century, but a re-
newed interest arose two centuries later over the diffusion regime with an underlying wave
equation. Interference introduces fascinating effects in multiple light scattering [49–51], as
section 1.2 already demonstrated.

Disorder in multiple scattering even raises hopes for some unexpected applications.
The time-reversibility of acoustical waves allows to focus the waves through a multiple-
scattering medium and,e.g., destroy brain tumors [52]. A coherent wave is sent through a
multiple-scattering medium, and the amplitude and phase of the scattered wave is recorded8.
The recording of the complex acoustic field is played back, after time-reversal of the sig-
nal. The acoustic field then propagates in exactly the same path, but in time reverse, as the
scattered field. Such recording and time-reversed play-back scheme is called an acoustic
time-reversal mirror [55, 56]. The time-reversal of the field scattered by a tumor in the
brain, or a kidney stone, is focussed back on its origin. The amplification of the acoustic
signal before play-back selectively heats up and destroys the alien scatterer.

Multiple-scattering materials have been proposed as a source for physically uncloneable
functions [57]. A speckle pattern is characteristic of a particular scattering material and
illumination, and can be coded in order to produce a personal and secret key, useable in
cryptographic schemes.

Communication in free air in an empty world is easy. The propagation of electromag-

8Acoustic transducers automatically measure both amplitude and phase of acoustic waves. The same measure
in optics requires a complicated interferometry setup [53,54].
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netic waves between two antennas is straight. In a disordered world, where buildings,
cars or mountains scatter all radio waves, the signal at the receiving antenna is blurred by
speckle. An array of receiving antennas, which can resolve the speckle, allows to decode
the original information, still contained in the speckle [58]. The application of the time-
reversal mirror to the communication in a disordered world was also shown to increase the
selectivity and the rate of the information transmission [59].

The addition of a pumped gain medium inside a multiple-scattering material leads to the
so-called random lasers [60,61], where the feedback mechanism is offered by the multiple
scattering. Random lasers of very small size [62, 63] and low-threshold [64] have been
reported.

Multiple scattering, which retain phase information, also preserves the subtle quantum
information, as the quantum noise [65,66].

Disorder has been shown to be an advantage in certain non-linear processes, where
phase-matching is in principle primordial [67–70]. Perfect phase-matching means that all
the light generated by a non-linear process interferes constructively, so that the efficiency
of the process is very good. A non-perfect phase-matching limits the size of the domains in
which interference of generated light is constructive. The use of a non-linear crystal of size
bigger than these domains drastically decreases the efficiency of the non-linear process. In
the case of a disordered material, the domains in which interference is constructive do not
interfere destructively with each other, but randomly. The generated light from a non-linear
disordered material is therefore like a speckle, originating from fields of random phase. In
average, the intensity of such speckle is much higher than the intensity coming from just
one domain9, and therefore allows the use of (cheaper) disordered non-linear materials to
generate, with a good efficiency, harmonics. Strongly scattering porous gallium phosphide
has been specifically used to enhance a second-harmonic-generation process [67,68,71].

The holy Grail of the study of multiple-scattering in disordered media is the observa-
tion, characterization and further application of Anderson localization.

1.4 Strongly-scattering samples

In order to study diffusion, interference effects in multiple light scattering, or Anderson
localization, suitable samples have to be made. Nature offers materials with a very wide
range of scattering strength and properties. The most interesting interference effects in mul-
tiple scattering of light appear in materials with a very strong interaction between light and
matter. Materials of ever stronger scattering strengths (i.e., wherek` is lower) are sought
after. As previously illustrated in examples taken from the kitchen (in section 1.1.2), mul-
tiple scattering samples can typically be made in two ways: either grinding a transparent
material into powder (such as the candy sugar into sugar powder) or incorporating bubbles
of air into a transparent material (such as the white of the egg, whipped into a white stable
foam).

Producing a strongly-scattering material typically follows one or the other of these pro-
duction mechanisms. Powders of materials with high refractive index, such as titanium
dioxide [72, 73], zinc oxide [74, 75], gallium arsenide [76], germanium [77–79] and sili-

9The intensity of this speckle is also smaller than in the case of a (quasi-)phase-matched non-linear crystal.
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con [80, 81], have all been shown to scatter light very strongly. The other mechanism, in-
troducing air bubbles or holes into a material, has lately been used to produce the strongest
scattering samples for visible light [81–84]. Gallium phosphide (GaP) is the semiconduc-
tor with the highest refractive index in the visible, namelyn = 3.3, and is transparent for
red and yellow light. Etching in the right conditions [85–87] drills holes in GaP, or pores,
of diameter comparable to the wavelength of light and in a random pattern. Chapter 3
describes the formation and optimization of the porous structure in GaP. Such a porous
material scatters light very strongly, as is illustrated in chapter 5.

In strongly-scattering media, where interference effects are expected to take a major
role, the characterization of samples is of critical importance. Such a characterization is
performed in chapters 4 and 5. Even for samples with very strong scattering (wherek` '
3.5) the diffusion approximation, along with the EBS correction, holds surprisingly well,
as chapter 5 shows.

Another very interesting property of the multiple-scattering materials we present in this
thesis is the anisotropy of porous GaP. Anisotropy, as an angular-dependence of the mean
free path or diffusion constant, can be seen both as a drawback and an advantage of strongly
scattering samples. Of course, the diffusion approximation sketched in section 1.1.2 is
isotropic and can only fail to describe anisotropy. On the other hand, in a 3D material, the
anisotropy decreases the dimension (a 1D or 2D material can be described as a 3D material
with infinite anisotropy). Anderson localization of light is expected to arise more easily in a
3D anisotropic medium than in an isotropic one [88,89]. Both diffusion and wave diffusion
properties of anisotropic porous GaP are presented and discussed in chapter 6.

1.5 Outline of the thesis

This thesis presents a study on multiple light scattering in strongly-scattering porous GaP
samples. The theory of diffusion and EBS on one hand, and the preparation of the strongly
scattering samples on the other hand are necessary preliminaries to the experimental study.
Effects such as the escape of the diffuse light through the interfaces, interference correc-
tions of strongly-scattering samples, and macroscopic anisotropy in multiple light scatter-
ing are more particularly presented.

• Chapter 2 presents an introduction to the theory for multiple scattering of waves.
The propagation of light in inhomogeneous media is described in terms of Green
functions, scattering matrices and scattering diagrams. A Boltzmann equation for
the transport of intensity in the multiple-scattering regime is derived, and leads to
the diffusion equation. The diffusion equation is applied to the geometry of a slab in
order to give predictions for actual experiments. Stationary diffusion is characterized
by the transport mean free path` whereas dynamic diffusion is characterized by the
diffusion constantD. The EBS effect, the remaining of the interference in multiple
scattering after ensemble averaging, is derived and commented on.

• In chapter 3, the processes for the formation of the strongly-scattering porous GaP
samples are detailed. Electrochemical etching produces a layer of porous material,
diffusive for light. The geometric properties of porous GaP can be varied depend-
ing on the etching conditions. Photochemical etching allows the removal of a bare
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GaP layer, remaining from electrochemical etching, to simplify the analysis of op-
tical measurements. Further chemical etching increases the size of the pores, in a
controlled way, thereby increasing the range of geometric and scattering properties
achievable with porous GaP.

• Chapter 4 focusses on the interface of a diffusive medium. The boundary conditions
to the diffusion equation are derived and explained. The angular-dependence of the
diffuse light escaping the material through the interface is shown to be characteristic
of the effective refractive index of the material. We show that the refractive index of
strongly-scattering porous GaP samples can be determined. The refractive index of
porous GaP as a function of porosity does not follow the effective medium theories
usually accepted.

• In chapter 5, the scattering properties of porous GaP are determined. The effects of
the three etching steps from chapter 3 are quantified. Porous GaP samples are opti-
mized, in the electrochemical-etching step and in the further chemical-etching step,
for strong scattering. Optical absorption is shown to be negligible. Total transmis-
sion and EBS measurements are performed on samples withk` ' 3.5. No optical
measurement on our samples presents a deviation from diffusion, expected at the
onset of Anderson localization.

• In chapter 6, a macroscopic anisotropy in a multiple-scattering medium is studied.
A hopping model is used to generalize the diffusion equation to a medium with an
anisotropic diffusion constant. The expectations for stationary, dynamic diffusion,
and EBS are derived in the anisotropic case, and are shown to all depend on the
anisotropy in the diffusion constant. Anisotropic porous GaP samples are produced.
The diffusion is shown to be anisotropic in these samples, from stationary and dy-
namic diffusion, and EBS measurements. The interpretation of stationary measure-
ments in terms of a dynamic quantity, the (anisotropic) diffusion constant, is com-
mented on.

The last chapter of this thesis does not treat of multiple light scattering or porous GaP.
Nevertheless, this chapter has conceptual links to the scattering theory presented in chap-
ter 2. In addition, the scheme of cavity-mode switching presented here can be easily gen-
eralized and adapted to the switching dynamics of an (Anderson) localized state.

• Chapter 7 addresses the subject of the capture of a light pulse in a short high-finesse
cavity. In theory, a pulse can be totally coupled in a short cavity, provided the re-
flectivity of the input coupler is dynamically matched to the incident pulse shape. In
the case of a high-finesse cavity, such pulse capture also compresses the frequency
components of the incident pulse within one, thin, cavity mode. We realize experi-
mentally this pulse capture scheme. The light inside the switched cavity is shown to
have at the same time the highest intensity and the narrowest bandwidth compared
to any stationary cavity.

Most of the results contained in this thesis can also be found in references [28,90–94].
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Chapter 2

Principles of
multiple scattering theory

In this chapter, I present a full derivation of multiple scattering theory needed to obtain
experimental predictions. The reader who only wants a quick peak at the theoretical results
is advised to jump directly to sections 2.5 and 2.6.2. The more theoretically-inclined reader
is encouraged to follow the chapter from the beginning, which gives a fuller and more
satisfying ground to the theoretical results.

2.1 Introduction

Light is an electromagnetical wave, yet in most everyday materials (milk, paint, or wood),
it behaves in the same way as the variations of temperature in a room, or a drop of ink in
a tank of water,i.e., according to a diffusion equation. This chapter derives how light goes
from the free-space directional propagation to the diffusive transport in a medium with lots
of scatterers. The first section introduces the concept of Green functions for describing the
propagation of light, and first of all in a medium without scattering. The second section
considers the interaction of light with one scattering potential. The T-matrix formalism for
one scatterer is introduced and leads to the description of the simplest possible scatterer.
The third section takes the step forward to multiple scattering of light. The assumption
that interference of light plays no role leads to the Boltzmann equation. The, rather tech-
nical, derivation of this equation is inspired from Ref. [95] although a different, and more
personal, approach is developed. The Boltzmann equation, through the radiative trans-
fer equation, is approximated to obtain the well-known diffusion equation. Section four
applies the diffusion equation to an experimental situation, to obtain the energy density
profile in, the reflection of, and the transmission through, a diffusive slab. The last section
relieves the assumption of the third section of the absence of interference, and derives the
so-called enhanced backscattering effect (EBS). This last derivation is inspired from sev-
eral sources [96–98] and corrects a mistake in the treatment of the internal reflection to
preserve the enhancement factor of 2 in media with time-reversal conservation.
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2.2 Homogeneous media

Light being a wave, its propagation is described by a Helmholtz equation. The scalar
Helmholtz equation in a homogeneous medium is(

∇2 + k2
0

)
ψ0(r ) = 0, (2.1)

whereψ0(r ) is the amplitude of the scalar field,∇2 the Laplacian operator, the amplitude
of the wave vectork0 = n0ω/c, ω the angular frequency of light,c its celerity in vacuum,
n0 the refractive index of the material, andr the position in space. The use of the scalar
Helmholtz equation still captures the essential physics of multiple light scattering. The
electric and magnetic fields are linearly related to the scalar fieldψ [95, 99]. The solution
to the Helmholtz equation is the well-known plane wave with wave vectork0.

In order to describe anything else than free-space propagation, precious tools are the
Green functions. The free-space Green functiong0(r , r ′) is the amplitude of the field at
position r coming from a source at positionr ′. The Green functiong0(r , r ′) follows the
equation(

∇2 + k2
0

)
g0(r ′, r ) = δ(r ′ − r ). (2.2)

The medium being homogeneous, translation invariance implies that the Green function
only depends on the difference between the two positions:g0(r ′, r ) = g0(r ′ − r ) and can
also be writteng0(r ).

The solution to Eq. 2.2 is easily found by applying Fourier transformation, and denoting
p the Fourier space parameter:(

−p2 + k2
0

)
g0(p) = 1. (2.3)

In Fourier space, the solution becomes

g0(p) =
1

k2
0 − p2 + iε

, (2.4)

where an infinitesimally small imaginary part has been added. This addition solves the
divergence atp = k0, and allows complex analysis to be used in order to find the real space
solution

g0(r ) = −
exp(ik0r)

4πr
, (2.5)

which is recognized as a spherical wave, as was expected from a point source1.
In order to obtain the field at a given positionr from an ensemble of sources, the Green

function has to be convoluted with the source fieldψs(r ), as

ψ(r ) =
∫

g0(r , r ′)ψs(r ′) dr ′. (2.6)

1Note that the choice of the smallpositiveimaginary part in Eq. 2.4 leads to take the spherical wave propagat-
ing outward, instead of inward, and therefore is the choice of causality [23,100].
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2.3 Single scattering

2.3 Single scattering

2.3.1 Full Green function

Scattering originates from an inhomogeneity in the refractive index of the medium. Consid-
ering a medium with refractive indexn0, the scattering potential of a region with refractive
indexn(r ) is V(r ′, r ) ≡ V(r )δ(r ′−r ) =

[
n2(r ) − n2

0

]
(ω/c)2δ(r ′−r ). This position-dependent

potential is found in the wave equation (see Eq. 2.1) as(
∇2 + k2

0

)
ψ(r ) =

∫
V(r , r ′)ψ(r ′) dr ′. (2.7)

Eq. 2.7 is formally solved by using Eq. 2.6 and considering the termV(r , r ′)ψ(r ′) as the
source:

ψ(r ) = ψin(r ) +
∫

g0(r , r1)V(r1, r2)ψ(r2) dr1dr2, (2.8)

whereψin(r ), the incident wave, is a solution to Eq. 2.1, the homogeneous wave equation.
Eq. 2.8 is known as the Lippman-Schwinger equation [101]. It is also possible to obtain a
recursive equation for the full Green function, analogous to Eq. 2.8, known as the Dyson-
Schwinger equation:

g(r ′, r ) = g0(r ′ − r ) +
∫

g0(r ′ − r1)V(r1, r2)g(r2, r ) dr1dr2. (2.9)

2.3.2 T-matrix

By iterating Eq. 2.8,i.e., by developing the field in successive orders of the scattering
potentialV, a non-recursive equation is found:

ψ(r ) = ψin(r ) +
∫

g0(r , r1)T(r1, r2)ψin(r2) dr1dr2, (2.10)

where the T-matrixT(r ′, r ) is defined as

T(r ′, r ) ≡ V(r ′, r ) +
∫

V(r ′, r1)g0(r1, r2)V(r2, r ) dr1dr2 (2.11)

+

∫
V(r ′, r1)g0(r1, r2)V(r2, r3)g0(r3, r4)V(r4, r ) dr1dr2dr3dr4 + · · · .

The T-matrix is an expansion in orders of the scattering within the same scatterer. Tak-
ing only the first term in this expansion is known as the first-order Born approximation.

It is very useful to describe equations involving multiple scattering thanks to diagrams
where integration is implicit. The notations for the diagrams are shown in Fig. 2.1. With
this notation, Eq. 2.11 can be rewritten as

x  =  o + o o + o o o +     . (2.12)
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o  one scattering potential V(r',r)  
x  one T-matrix T(r',r)

        free space Green function g0(r',r)

  full Green function g(r',r)

  link between identical particles r' = r

Figure 2.1: Drawing conventions
for scattering diagrams.

2.3.3 Point scatterers

The T-matrix formalism allows to consider in one term the whole (internal) scattering possi-
ble from one particular scatterer. With this formalism, the point scatterer [102] is the easiest
path to take. The point scatterer allows analytical solutions to be found for many multiple
scattering problems, including the derivation of EBS in section 2.6. Other analytical so-
lutions to the T-matrix include the point scatterer with gain [103], the Mie-sphere [3, 104]
and the plane scatterer [105].

Point scattering means scattering at exactly the position of the scatterer. The poten-
tial corresponding to the point scatterer is a Dirac delta function at the positionR of the
scatterer:V(r ′, r , ω) ≡ V(ω)δ(r ′ − R)δ(r − R).

Introducing this point potential into the T-matrix definition, Eqs. 2.11 or 2.12, gives the
T-matrix for the point scatterert(r ′, r , ω) :

t(r ′, r , ω) ≡ V(ω)δ(r ′ − R)δ(r − R)

×
[
1+ g0(R,R)V(ω) + g0(R,R)V(ω)g0(R,R)V(ω) + · · ·

]
= δ(r ′ − R)δ(r − R)

V(ω)
1− V(ω)g0(R,R)

. (2.13)

The point scatterer T-matrix in Fourier space is easily found as

t(p′,p, ω) = exp
[
iR · (p − p′)

]
t(ω) with t(ω) ≡

V(ω)
1− V(ω)g0(R,R)

. (2.14)

In the case of point scatterers, the free-space Green function from one point back to
itself has to be used. Strictly speaking, thisg0(R,R) is a divergence in the T-matrix, but is
entirely due to the non-physical approach of anexactpoint-like scatterer. The divergence is
solved by considering for example a scatterer of small but finite size, or by operating a cut-
off in frequency space. The frequency-dependent term in the T-matrix of the point scatterer
can be made explicit. For light in the vector case, the point scatterer has been shown to
always display a resonance [95,106]. The regularization and frequency dependence of the
T-matrix will neither be further discussed nor used in this thesis.

2.3.4 Optical theorem

A physical scatterer has to obey energy conservation. All energy which is removed from
the incident wave should be either absorbed or scattered. In the following sections, only the
case of elastic scattering, where no absorption takes places, will be developed. The extinc-
tion cross sectionσex is the amount of light removed from the incident wave, normalized to
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a surface. The scattering cross sectionσsc is the amount of light, incident wave excluded,
which flows through a sphere centered on the scatterer, in far-field, normalized to a surface.

In the absence of absorption, the scattering and extinction cross sections have to be
equal. The energy conservation leads to the so-called optical theorem [107], which imposes
a constrain on the T-matrix:

σex =
Im T(k, k, ω)

k
=

∫
|T(k′, k, ω)|2

(4π)2
dk̂′ = σsc. (2.15)

The extinction side of Eq. 2.15 shows how light is scattered from the wave vectork to
the samek, therefore how much stays in the incident wave. The scattering side of Eq. 2.15
shows how much light scatters from the incident wavek into any other directionk′.

In the case of point scatterers, the optical theorem reduces to

Im t(ω)
ω/c

=
|t(ω)|2

4π
. (2.16)

2.4 From multiple scattering to diffusion

Having derived the behavior of one scatterer, through its T-matrix (Eq. 2.11), and the cor-
responding scattered field (Eq. 2.10), we can go on with multiple scattering, that is scat-
tering by several distinct scatterers. The scatterers are considered equal, having the same
T-matrix, and their density isρ.

2.4.1 Averaged full Green function

We can now rewrite the Dyson-Schwinger equation (Eq. 2.9) in terms of scattering by a
T-matrix, where all scattering events between different scatterers are taken into account2:

=  + x + x x +

    x x x + 
     +  Σ          . (2.17)

The so-called mass operator, or self-energy operator3, Σ(r ′, r ) is introduced to sum up all
irreducible diagrams (those which can not be broken in two without breaking a dashed
curve).

Σ = x + x x x + x x x x +      . (2.18)

The contributions to the self-energy operator, as seen from Eq. 2.18, include an infinite
number of scattering events on a large number of different scatterers.

Knowing the exact position of all scatterers makes it in principle possible to calculate
the field at all places. For a realistic number of scatterers (∼ 1 mole) this exact solution

2Scattering twice consecutively on one single scatterer is forbidden, since this event is already accounted for
in the T-matrix of the scatterer.

3Both names are originated from field theory.
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is nowhere near attainable by present day computers, nor practical. One particular distri-
bution of scatterers gives rise to a speckle pattern: a field of average zero and of strongly
fluctuating phase, amplitude and polarization. Speckle is better considered through its sta-
tistical properties [13–15, 28, 108]. Speckle is not the subject of present derivation and is
removed by taking the ensemble average of the full Green function. The operation〈·〉 is
defined as the average over the position of all scatterers4. The medium being in average
invariant by translation, the average quantities will not depend on the position, but on the
distance between two points:

〈g(r ′, r )〉 ≡ g(r ′ − r ); 〈Σ(r ′, r )〉 ≡ Σ(r ′ − r ). (2.19)

One usual simplification is the so-called independent scattering approximation (ISA),
which leads to neglect all but the lowest-order term in the series ofΣ(r ′, r ). In Fourier
space, the ISA is easily writtenΣ(p) = ρT(p,p).

Applying the averaging on the recursive equation for the full Green function, Eq. 2.17
gives

g(r ′) = g0(r ) +
∫

g0(r − r1)Σ(r1 − r2)g(r2) dr1dr2. (2.20)

As was done to obtain the solution to the free-space Green function (Eq. 2.4), the aver-
age full Green function can be Fourier transformed, and symbolically solved5:

g(k) = g0(k) + g0(k)Σ(k)g(k) (2.21)

g(k) =
[
g0(k)−1 − Σ(k)

]−1
=

[
k2

0 − p2 − Σ(k)
]−1

. (2.22)

It is immediately clear from Eq. 2.22 that the solution to the average full Green function
is analogous to the solution to the free-space Green function, in Eq. 2.4. In the case of point
scatterers, the wave vector can be explicitly renormalized asK , with K2 ≡ k2

0 − Σ:

g(r ) = −
exp(iKr )

4πr
. (2.23)

The real part of the renormalized wave vector leads to a different refractive index for
the material. In fact, a material with an index of refractionn different than 1 is a vacuum
full of scatterers where the wave vectorK inducesn0. The imaginary part ofK leads to
extinction, and is therefore related to the extinction mean free path`ex: K ≡ n0ω/c+ i/2`ex.

The calculated average full Green function does not describe diffusion. It only describes
how an incident wave penetrates in the medium, without tracking the light after it has been

4In practice, the ensemble averaging can be provided by several effects. In a colloidal suspension for example,
the Brownian motion of the particles quickly and continuously randomizes the position of the scatterers. In a solid
sample, like the porous GaP under study in this thesis, there is no Brownian motion. Ensemble averaging is then
obtained by averaging over several measurements performed at different positions in the sample, or by rotating
the sample. In the case of stationary measurements, a pulsed source can be advantageously used. The coherence
length of the light pulse sets the distance between two adjacent regions which do not interfere one with the other.
If the sample size is much larger than the coherence length, the number of these independent regions give the
ensemble averaging.

5The infinitesimally small imaginary offset is dropped sinceΣ is itself imaginary.
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scattered. The intensity of the non-scattered part of the incident beam through the medium
is usually called the coherent transmission, and it follows the exponential decay

Icoh

I0
=

∣∣∣exp(iKz)
∣∣∣2 = ∣∣∣exp[−Im(K)z]

∣∣∣2 ≡ exp(−z/`ex), (2.24)

wherez is the depth inside the medium, andIcoh/I0 is the intensity in the coherent beam,
normalized to the incident intensity.

The term ‘coherent transmission’ or ‘coherent beam’, and its opposite ‘incoherent
beam’ for the scattered wave, should not be taken literally. Coherence is the capacity
of a wave to interfere. The (multiply) scattered wave keeps, as much as the remaining of
the incident beam, its coherence, as can be shown from the effect of speckles or, as will be
shown later, enhanced backscattering.

Measuring〈g(r ′, r )〉 in a real experiment will require to average fields over disorder.
A normal light sensitive detector only measures intensity. An interferometric setup allows
both amplitude and phase information to be recorded. Averaging such interferometric data
can lead to strictly observing the averaged full Green function. In practice, the ‘coherent
transmission’ can more easily be measured by looking at the exact same wave vector in
transmission than the incident wave [78].

2.4.2 Intensity in the multiple scattering regime

In the previous section, only the averaged full Green function has been calculated. The
(multiply) scattered wave can not be described in this approach and the propagation of the
intensity has to be explicitly considered. In order to obtain the multiply scattered intensity,
the ensemble average of the norm squared of the field,〈ψ(r )ψ∗(r )〉, has to be considered.

The diagrams which now have to be drawn comprise two lines, the upper one being a
Green function, and the lower one being the complex conjugate of a Green function. The
intensity propagator, which is just a Green function for the intensity, is defined by

G(r1, r2; r3, r4) ≡ g(r1, r2) × g(r3, r4). (2.25)

The first few diagrammatic terms of the intensity propagator are

G  =     +   +       + 
    
    +       +    +     +         .

   x    x x  x   x   x
   x    x x  x   x   x
  x   x  x   x   x   x   x   x
  x   x  x   x   x   x   x   x (2.26)

It is useful to describe also the intensity propagatorRsimilar toG but without the incoming
and outgoing Green functionsG ≡ (g× g∗)R(g× g∗). UsingRallows the calculation of the
intensity of light generated by an incoming field according to

〈I (r )〉 ≡ 〈ψ(r )ψ∗(r )〉 = 〈ψinc(r )〉〈ψ∗inc(r )〉 (2.27)

+

∫
〈g(r , r1)〉〈g∗(r , r3)〉〈R(r1, r2; r3, r4)〉〈ψinc(r2)〉〈ψ∗inc(r4)〉dr1dr2dr3dr4.

An equivalent relation has already been stated for the field in Eq. 2.10.
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Similarly to the self-energy operator, containing all irreducible diagrams present in the
full Green function (see Eq. 2.18), the sum of all irreducible diagrams in the intensity
propagator is identified asU(r1, r2; r3, r4):

U  =  +      +           +         .
x  x   x   x   x   x
x  x   x        x     (2.28)

The relation between the intensity propagatorG and the sum of its irreducible terms
U, written in symbolic form and ensemble averaged, also known as the Bethe-Salpeter
equation, is

〈G〉 = 〈g〉 × 〈g∗〉 + (〈g〉 × 〈g∗〉) 〈U〉〈G〉. (2.29)

The solution to the intensity propagator still being impossible, successive approxima-
tions have to be made.

The first approximation neglects all but the lowest-order term in the series of〈U〉. Since
this lowest order term comprises only one scatterer, its contribution is linear in order of the
density. This approximation is therefore known as the low-density approximation. The first
term in〈U〉 leads to the propagation of intensity from scatterer to scatterer, and is effectively
considering no effect of interference in the intensity. The low-density approximation will
therefore lead, in the following subsection, to diffusion. This first order term in〈U〉 leads
to consider a whole series of diagrams in〈R〉, called the Ladder diagrams:

L     +      +           +

  =  +  L    .

x  x   x   x   x   x
x  x   x   x   x   x
x  x
x  x (2.30)

The second approximation keeps, along with the Ladder terms, a whole series of dia-
grams [109–111] in〈R〉, called the most-crossed diagrams〈C〉:

C          +          +         .
x   x   x   x   x
x   x   x   x   x (2.31)

As was already intuitively understood, the first interference effect which remains after en-
semble averaging corresponds to the time-reversed paths, which is what the most-crossed
diagrams account for. This second approximation,〈R〉 = 〈L〉 + 〈C〉, which gives rise to the
enhanced backscattering, is developed in the next section.

Anderson localization of light requires a more subtle approximation and inclusion of
the most-crossed diagrams, along with the first term of〈L〉 in 〈U〉, and not in〈R〉 [112–114].

2.4.3 Boltzmann equation

The first approximation is keeping only the Ladder terms〈L〉 in the intensity propagator
〈R〉.
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2.4 From multiple scattering to diffusion

Along with the definition of the Ladder terms in Eq. 2.30, a straightforward recursive
equation is written. This recursive equation reads, in Fourier space, as

L(p1,p2; p3,p4) = T(p1,p2)T∗(p3,p4) (2.32)

+

∫ ∫ ∫ ∫
T(p1,pa)T∗(p3,pc)g(pa,pb)g∗(pc,pd)

×L(pb,p2; pd,p4) dpadpbdpcdpd.

The averaged Ladder contribution〈L〉 is invariant by translation. This invariance leads
to the conservation of momentum, which can here be written asp1 + p3 = p2 + p4. The
translation invariance is used to simplify the equation of〈L〉 according to

〈L(p1,p2,p3,p4)〉 ≡ δ(p1 − p2 + p3 − p4)L(p,p′,q), (2.33)

wherep, p′ andq are the three independent Fourier vectors resulting, which are redefined,
for later convenience, as:

p1 = p + q/2
p2 = p′ + q/2
p3 = −p + q/2
p4 = −p′ + q/2.

(2.34)

The integral of Eq. 2.32 is still difficult to do because of the presence of the two Green
functions. For the purpose of the integration, they are included in the function to calculate,
according to

M(p,p′,q) ≡ g(p + q/2)g∗(p − q/2)L(p,p′,q). (2.35)

The equation forM reads, after integration overpc and withpα ≡ pa − q/2,

M(p,p′,q) = g(p + q/2)g∗(p − q/2) (2.36)

×

[
ρTT∗ + ρ

∫
T(p + q/2,pα + q/2)T∗(p − q/2,pα − q/2)M(pα,p′,q) dpα

]
,

where the first term, product of the two T-matrixes, has been written symbolicallyTT∗, for
readability, and because this term stays as a constant,TT∗ ≡ 〈T(p + q/2,p′ + q/2)T∗(p −
q/2,p′ − q/2)〉.

In order to pursue the integration, the product of the two Green functions has to be
expanded, as

gg∗ =
g− g∗

1/g∗ − 1/g
. (2.37)

The product of the Green functions can equivalently be written asg(ω+,p+)g(ω−,p−)
[115] whereω± ≡ ω±Ω/2± iε andp± ≡ p±q, in order to obtain dynamic quantities. Light
is described as having two distinct time characteristics. The frequency of the light itself is
ω and the frequency of its envelope, describing transport, isΩ. Analogously, light has two
distinct spatial characteristics,p its wave vector, andq the momentum of its envelope.
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Principles of multiple scattering theory

The difference of the inverse of the two Green functions, in Eq. 2.37, can be explicitly
written thanks to the solution for the full Green function found in Eq. 2.22:

1
g(ω−,p−)

−
1

g(ω+,p+)
=

(
ω −Ω/2

c

)2

−

(
ω + Ω/2

c

)2

−

(
p −

q
2

)2

+

(
p +

q
2

)2
− Σ(ω−,p−) + Σ(ω+,p+)

= 2p · q − 2
Ωω

c2
+ 2i∆Σ, (2.38)

with the definition∆Σ ≡
[
Σ(ω+,p+) − Σ(ω−,p−)

]
/2i. In the same way, the corresponding

shorthand∆g is defined as∆g ≡
[
g(ω+,p+) − g(ω−,p−)

]
/2i.

Eq. 2.36 becomes[
−ip · q + i

Ωω

c2
+ ∆Σ

]
M(p,p′,q) (2.39)

= ∆g

[
ρTT∗ + ρ

∫
T(p+,p+α)T∗(p−,p−α)M(pα,p′,q) dpα

]
.

This last equation has to be interpreted. First of all, the functionM(p,p′,q) is an inten-
sity propagator, including the Ladder diagrams and further propagation, in the directionp
(See Eq. 2.35), similar to a specific intensity. TheiΩ term in the left hand side of Eq. 2.39
can be interpreted as a time derivative in Fourier space, whereas theip · q is a hydrody-
namic flow term, containing a gradient. The∆Σ is in fact the imaginary part ofΣ, which
was already seen in Eqs. 2.22 through 2.24 and attributed to extinction. The first term of
the right hand side of Eq. 2.39 is independent of the intensity and therefore is a source term.
The second term in the rhs reflects the scattering in the directionp, from other directions.

It is important to note that in order to describe Eq. 2.39 as a time derivative plus a flow
term, etc, a typical time has to be introduced. Phenomenologically, this typical time is the
average travel time between two scattering events, depending on the mean free path and the
phase velocity. It has been shown [95, 116, 117] that this phenomenological assumption is
wrong in the case of light since it forgets the dwell time in the scatterer. The rigorous time
to be used is the mean free timetmf ≡ `/vE. The energy velocityvE is described in more
detail in the dynamic diffusion derivation (see section 2.4.4 and Eq. 2.54).

The physical interpretation of Eq. 2.39 can be summed up in[
∂

∂t
+ v · ∇ + scattering out

]
Iv(q, t) = source+ scattering in. (2.40)

This equation is recognized as a Boltzmann equation, which rules the transport of classical
particles. This Boltzmann equation is also known as a radiative transport equation, which
is successfully used as the first multiple-scattering approximation [118].

The Boltzmann equation, although already a strong approximation to the full intensity
propagation problem, can not be solved analytically. Numerous simulations [119] have
been based on such a radiative transport equation, more particularly in astrophysics. The
next step in order to obtain analytical solutions to a multiple-scattering problem resides in
the diffusion approximation, which is now described.

30



2.4 From multiple scattering to diffusion

2.4.4 Diffusion approximation

The low-density approximation, which has already been used to retain only the ladder
diagrams in the intensity propagator, has the following implication: theΣ term in∆g has
to be neglected, that is, taking the free-space Green function:∆g → ∆g0. In addition,
the size of the scatterers is assumed to be much smaller than the macroscopic length scales
describing the transport of light, which are represented byq in Fourier space. It is therefore
possible to consistently neglectq in front of p in ∆Σ,∆g and the T-matrix productTT∗. The
interpretation of this last approximation is that the scatterers see each others in far field.

Eq. 2.39 becomes[
−ip · q + i

Ωω

c2
+ ∆Σ(q = 0)

]
M(p,p′,q) (2.41)

= ∆g0(q = 0)

[
ρTT∗(q = 0) + ρ

∫
T(p,pα)T∗(p,pα)M(pα,p′,q) dpα

]
.

Stationary regime

All experiments using a light source have to be performed in a dynamic way, either with
a pulse of light, or with a continuous-wave (cw) source which has been switched on at a
certain time. Integrating the intensity response of a medium to a pulse over all time gives
a time-independent quantity. This integration is typically performed by using a detector
of light with much slower dynamics than all other processes in the medium6. Switching
on a cw source, typically a continuous wave laser, produces an obviously time-dependent
response of an otherwise static medium. When the cw source has been on for a sufficiently
long time, the response of the material becomes time-independent. These two cases, inte-
gration over time of a pulse response and limit at long time of the response of a continuous
source, are equivalent and grouped under the namestationary regime. In the stationary
regime, light still has a proper frequencyω, but the time dependence of the intensity is
neglected,Ω = 0.

The∆g term can be made explicit:

2i∆g ≡ g(ω+,p+) − g(ω−,p−)

=

(ω + Ω/2+ iε
c

)2

−

(
p +

q
2

)2
−1

−

(ω −Ω/2− iε
c

)2

−

(
p −

q
2

)2
−1

=

[(
ω

c

)2
− p2 + iε

]−1

−

[(
ω

c

)2
− p2 − iε

]−1

= PV

(
ω2

c2
− p2

)
− iπδ

(
ω2

c2
− p2

)
− PV

(
ω2

c2
− p2

)
− iπδ

(
ω2

c2
− p2

)
∆g = πδ

(
p2 −

ω2

c2

)
, (2.42)

6among others: duration of pulse, duration of light transport through the material, Brownian motion of the
particles of the material, resonance time in the scatterers, etc...
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where, in the second line, the free space Green function is used, according to the low-
density approximation. In the third line, the stationary case (Ω = 0), and the far field
approximation (q � p) are applied. The fourth line follows from a mathematical identity,
limε→0(x+ iεσ)−1 = PV(1/x) − iσπδ(x) whereσ = ±1 and PV(x) is the Cauchy principal
value7.

The propagatorM(p,p′,q) is seen to be equal to the product of a delta function, and a
new function:M(p,p′,q) ≡ N

(
ω
c p̂,p′,q

)
δ
[
p2 − (ω/c)2

]
wherep̂ is the unitary vector in

the direction ofp.
The stationary Boltzmann equation forN(ωc p̂,p′,q) is[
−i
ω

c
p̂ · q + ρImT(p,p′)

]
N

(
ω

c
p̂,p′,q

)
(2.43)

= ρπ

[
TT∗ +

∫ ∣∣∣∣∣T (
ω

c
p̂,
ω

c
p̂α

)∣∣∣∣∣2 N
(
ω

c
p̂α,p′,q

)
ω

c
dp̂α

]
.

The physical quantities, energy density and current density of the light, are related
to the averaged intensity propagator with Green functions at both endsG(p,p′,q). The
macroscopic transport is described byq, irrespective of the internal parametersp andp′,
which have to be summed. The local radiative energy and current densities are therefore
[95]

Wrad
ω (q) =

(
ω

c

)2 ∑
p

∑
p′

G(p,p′,q) (2.44)

Jω(q) = ω
∑

p

∑
p′

pG(p,p′,q). (2.45)

In order to link Eq. 2.43 to the physical quantities,G(p,p′,q) has to be made more
explicit:∑

p′
G(p,p′,q) =

∑
p′

M(p,p′,q)g(p2)g∗(p4)

=
∑
p′

N
(
ω

c
p̂,p′,q

)
δ

(
p2 −

ω2

c2

)
g(p′ + q/2)g∗(p′ − q/2)

=
∑
p′

N
(
ω

c
p̂,p′,q

)
δ

(
p2 −

ω2

c2

)
π

−ip′·q + ρImT(p,p)
δ

(
p′2 −

ω2

c2

)

≡ P
(
ω

c
p̂,q

)
δ

(
p2 −

ω2

c2

)
. (2.46)

The newly defined functionP
(
ω
c p̂,q

)
follows the same Boltzmann equation as

N
(
ω
c p̂,p′,q

)
(Eq. 2.43), apart from theTT∗ term which is now multiplied by a constant.

The diffusion approximation takes a last step in order to obtain the diffusion equation.
The intensity propagatorP

(
ω
c p̂,q

)
can be expanded in moments ofp̂. The first two mo-

ments correspond to the energy densityWrad
ω (q) and the current densityJω(q). The diffusion

7The Cauchy principal value is the limit of an integral around a singularity which approaches the singularity
in a symmetrical way.
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2.4 From multiple scattering to diffusion

approximation only conserves these first two moments. The diffuse intensity is therefore
almost isotropic, with a small dipole component which induces the energy flux through the
medium. The intensity propagator is found to be, in the diffusion approximation,

P
(
ω

c
p̂,q

)
=
ω2

4πc

[
Wrad
ω (q) +

3
c

p̂ · Jω(q)

]
. (2.47)

Filling Eq. 2.47 into the Boltzmann equation forP
(
ω
c p̂,q

)
and taking its first twôp-

moments gives two equations linking the energy and current densities to each other:
−iq · Jω(q) = Constant

i
c
3

qWrad
ω (q) = ρ

∫
|T

(
ω
c p̂α, ωc p̂

)
|2

(4π)2
(1− p̂ · p̂α) dp̂αJω(q),

(2.48)

where the optical theorem (Eq. 2.15) is used in the first equation to simplify out two terms,
and in the second equation to shift theJω term from lhs to rhs under the integral. A few
terms have been neglected since they simplify the writing, but hardly reduce the generality
of the result: all the integrals of the odd moments inp̂x of the norm of the T-matrix are zero
if the T-matrix is even in the transformationp̂x → −p̂x.

Theρ|T |2 term is the product of the density and the scattering cross section (see Eq. 2.15),
and is therefore recognized as the inverse of the scattering mean free path. The integral over
the scattering function|T |2 and the anglêp·p̂α is an average over the scattered angle〈cosθ〉.
The Boltzmann mean free path is defined as

`B ≡

[
ρ

∫ ∣∣∣∣∣T (
ω

c
p̂α,

ω

c
p̂
)∣∣∣∣∣2 (1− p̂ · p̂α) dp̂α

]−1

=
`sc

1− 〈cosθ〉
. (2.49)

Rewriting Eq. 2.48 in coordinate space,
∇ · Jω(r ) ∼ δ(r ) = source

−
c`B

3
∇Wrad

ω (r ) = Jω(r ),
(2.50)

and combining these two equations gives

−
1
3

c`B∇
2Wrad

ω (r ) ∼ δ(r ) = source, (2.51)

which is the well-known stationary diffusion equation. The length scale associated with
diffusion, i.e., to propagation of the intensity without interference, is here found to be the
Boltzmann mean free path̀B, whereas it was the scattering mean free path in the case of
the field propagation. In the case of isotropic scattering, such as for point scatterers, the
two mean free paths are equal,`B = `sc. The Boltzmann mean free path is renormalized
to the transport mean free path` in the presence of interferences. In the following sections
and chapters, onlỳ is used, sincèB has no physical meaning in the case of the multiple
scattering of waves.
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Dynamic regime

In a non-stationary case, the time dependence of the physical quantitiesWrad
ω andJω has to

be considered. The generalization of the previous derivation toΩ , 0 is not straightforward
[116, 117]. In the case of light, and contrarily to electrons, the wave can be delayed in
the scatterer. The assumption that the group velocity governs the propagation speed of
the energy in a medium containing resonant scatterers turns out to be wrong. Following
reference [95], in the dynamical case, the first moment of the Boltzmann equation (compare
to Eq. 2.50) is

∂

∂t
[1 + δ(1)

ω ]Wrad
ω + ∇ · Jω = source, (2.52)

where the first term of the time derivative of the energy density is the propagation delay,
and the second term is the extra delay due to resonance in a scatterer. The relationδ(1)

ω =

ρWpot
ω has been found following the same approximations described to obtain the stationary

diffusion equation.Wpot
ω is the energy contained in the scatterer, which is not radiative, and

doesn’t have a current.
The diffusion equation becomes[

∂

∂t
− D∇2

]
Wrad
ω (r , t) = source, (2.53)

whereD ≡ vE`/3 is the diffusion constant,vE the energy velocity

vE =
c2

vph

1

1+ ρWpot
ω

, (2.54)

wherevph = c/n is the phase velocity. The energy velocityvE is recognized as the dynamic
quantity characteristic of diffusion, as the transport mean free path` was the stationary
quantity characteristic of diffusion.

The diffusion Green function can now be explicitly written by solving the diffusion
equation with a spatial and temporal Dirac delta function as source, which yields:

Gd(r , t) =
D

(4πDt)3/2
exp

(
−

r2

4Dt

)
Θ(t), (2.55)

whereΘ(t) is the Heaviside function, equal to 1 fort ≥ 0, and 0 otherwise.
Integration over time of Eq. 2.55 gives the same result as solving the Green function

for the stationary diffusion equation, namely

Gd(r ) =
1

4πr
. (2.56)

Note that in the stationary diffusion, the diffusion constant does not appear, and the typical
length scale must come from the boundary conditions at the interface of a diffusive material.
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2.5 Diffusion in a slab

2.5 Diffusion in a slab

In the previous section the diffusion equation (Eq. 2.53) for an infinite medium is derived.
In order to apply such an equation to a real bounded material with an incident wave, a
source for diffusion and boundary conditions have to be considered. In section 4.2 the
boundary conditions are explained in more detail. The following derivations consider elas-
tic scattering,i.e., no absorption of light.

In all the practical examples presented in this thesis, the samples are in a slab geometry,
where lateral dimensionsx andy are much larger than transverse dimensionz. The system
is therefore modeled as a medium in which the diffusion equation holds, infinite in thex
andy directions, bounded atz = 0 andz = L, with vacuum at both sides. The incident
plane wave originates fromz= −∞.

The source of light, such as an incident plane wave, is rigorously described within the
framework of the multiple scattering theory, presented in the previous section. Within the
diffusion approximation, only diffuse light can be handled, and therefore an incident plane
wave can not be inserted as source in the diffusion equation. According to Eq. 2.24, an
incident plane wave decays exponentially with the depth, in units of the extinction mean
free path. In the case of elastic scattering, all the light which has left the coherent beam has
scattered once. If the scattering is isotropic, like for point scatterers or Rayleigh scattering,
the light which has left the coherent beam is already within the diffusion approximation.
The source of diffuse light is therefore

Sd(z) = −
∂Icoh

∂z
=

I0

`sc
exp

(
−

z
`sc

)
. (2.57)

If the scattering is anisotropic, for example for Mie spheres [4] or liquid crystals [120], light
which has been scattered only once is not yet part of the diffuse intensity. The transport
mean free path is the average distance after which light gets diffuse,i.e., when the distrib-
ution of light is (almost) isotropic. The phenomenological way [121] of treating the source
in the case of anisotropic scattering is therefore to set the source at exactly one transport
mean free path from the incident interface, inside the slab:Sd(z) = S0δ(z− `). A natural
although still phenomenological extension [122] to the previous description considers a
source which exponentially decreases with depth, in units of the transport mean free path
Sd(z) = S0 exp(−z/`). The source found for isotropic scattering links to this exponential
source, which justifies the use of the exponential for at least the small values of〈cosθ〉
when` is close tò sc.

2.5.1 Stationary diffusion

The following boundary conditions, Eqs. 4.7 and 4.9 from section 4.2, are taken:

Wrad
ω (z) − ze1

∂Wrad
ω (z)
∂z

= 0 at z= 0 (2.58)

Wrad
ω (z) + ze2

∂Wrad
ω (z)
∂z

= 0 at z= L, (2.59)

whereze, the extrapolation length, is of the order of the transport mean free path, and is a
property of the interface, potentially different for the front and back interfaces.
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Figure 2.2: Normalized energy densityWrad
ω (z) as a function of depth inside a slab of thickness

L = 10̀ , and whereze1 = ze2 = 2`/3. The full curve is the solution to the diffusion equation with an
exponential source (Eq. 2.61). The dashed curve is the solution for a delta source atz= ` (Eq. 2.60).
The gray lines symbolizes the boundaries of the slab.

Solving the stationary diffusion equation with these boundary conditions and for a delta
source is very easy. In the ranges[0; `[ and]`; L] separately, the intensityWrad

ω (z) is a linear
function of the depth, the integration constants are found:

Wrad
ω (z) =

S0

D


L − ` + ze2

L + ze1 + ze2

(z+ ze1), 0 ≤ z≤ `

` + ze1

L + ze1 + ze2

(L + ze2 − z), ` ≤ z≤ L.

(2.60)

Integrating the diffusion equation over an exponential source gives, for the whole slab,

Wrad
ω (z) =

S0

D

[
` + ze1

L + ze1 + ze2

(L + ze2 − z) − ` exp
(
−

z
`

)]
, (2.61)

where the thickness L of the slab is considered much bigger than the transport mean free
path, and thus terms asexp(−L/`) are neglected. Both solutions to the diffusion equation
in a slab, for exponential and delta sources, are plotted in Fig. 2.2.

The first measurement which can be done on a slab of diffusive material is the so-called
total transmission. The coherent transmission,i.e., the remaining of the incident plane
wave, has already been specified in Eq. 2.24, and seen to be a function of the scattering
mean free path. The transmission integrated over all angles is called the total transmission.
The total transmissionTd is defined as the total flux atz = L divided by the incident flux
S0, and is found to be

Td ≡
Jω(L) · ẑ

S0
= −

D
S0

∂Wrad
ω

∂z

∣∣∣∣∣∣
z=L

=
` + ze1

L + ze1 + ze2

, (2.62)
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where the coherent beam contribution has been left out. For all but very thin samples (a few
` thick) this approximation is valid. It is possible to add the coherent beam contribution,
although the validity of the diffusion equation with boundary conditions breaks for very
thin samples.

The total transmission scales with the inverse of the thickness, and can be recognized
as the equivalent of Ohm’s law for the conductance in electronic systems.

In the same way as for transmission, the total reflection can be calculated. The total
reflectionRd is defined as the flux going back through the incident interface, atz = 0,
normalized to the incident flux. The reflectionRd is found to be complementary toTd, as
necessary:

Rd ≡
Jω(0) · (−ẑ)

S0
=

L − ` + ze2

L + ze1 + ze2

= 1− Td (2.63)

If absorption dominates in the medium,i.e., the diffuse absorption lengthLa� `, the to-
tal transmission becomes exponentially decreasing with the thickness [11]:
Td(La � `) ∝ exp(−L/La). In the same limit, the diffuse reflection does not depend on
the thickness anymore, and decreases along with the diffuse absorption length.

2.5.2 Dynamic diffusion

Solving the time-dependent diffusion equation (Eq. 2.53) with the mixed boundary condi-
tions Eqs. 2.58 and 2.59 is not possible in closed form [123]. Instead, the Dirichlet bound-
ary conditions (Eq. 4.10), which are equivalent to the mixed conditions for small enough
absorbtion, are used:

Wrad
ω (z) = 0 at

{
z= −ze1

z= L + ze2.
(2.64)

The solutions to the time-dependent diffusion equation, Eq. 2.53, are the product of a
space harmonic and a time exponential. Considering a delta source located atz = ` and
t = 0, the energy density in time and space is found to be

Wrad(z, t) =
∞∑

m=1

exp

[
−π2m2Dt

L2
ex

]
sin

(
πm

z+ ze1

Lex

) I0 sin

(
πm

` + ze1

Lex

)
Lex

Θ(t), (2.65)

whereI0/Lex is the intensity of the source andLex ≡ L+ ze1 + ze2 is a shorthand, sometimes
(abusively) called the effective thickness, and which is here called extrapolated thickness.

The first sine term in Eq. 2.65 is themth eigenmode of the slab for the stationary diffu-
sion equation, with the boundary conditions of Eq. 2.64. The exponential term in Eq. 2.65,
coming from the dynamic diffusion equation, rules how each eigenmode decay in time.
Low order eigenmodes (for smallm) vary slowly in space and decay slowly because of
diffusion. Higher order eigenmodes vary fast in space and are the first ones to disappear
because of diffusion. The last sine term in Eq. 2.65 is the decomposition of the spatial delta
source in harmonics. The Heaviside function allows a light density inside the slab only
after the temporal delta source att = 0.
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Calculating the flux at the second interface leads to the normalized time-dependent
(total) diffuse transmission [11,28,124]

Td(t) = −
πD

L2
ex

∞∑
m=1

mexp

[
−π2m2Dt

L2
ex

]
cos

(
πm

L + ze1

Lex

)
sin

(
πm

` + ze1

Lex

)
Θ(t). (2.66)

Multiple scattering of light produces paths for light of very different length inside the
sample. Light which is scattered mostly forward follows the shortest optical path through
the slab, and therefore is transmitted first. Light which is scattered a lot and performs a
random walk before reaching the back interface follows a much longer optical path, and
is transmitted much later. Multiple scattering of light therefore spreads the initial pulse of
light in time, depending on the diffusion constant.

The behavior at long time of Eq. 2.66 is dominated by the least decaying exponential,
for m= 1, giving the time tail with decay rateΓ ≡ π2D/L2

ex,

Id(t → ∞)
I0

∝ exp(−Γt) . (2.67)

The proportionality constant is easily found from the termm= 1 in Eq. 2.66.

2.6 Enhanced backscattering

2.6.1 Derivation of the EBS line shape

In section 2.4, the Boltzmann and diffusion equations are derived. In order to obtain this
result which is free of interference, the intensity propagator had to be limited to only the
ladder contribution (see Eqs. 2.26 and 2.30). The following chapter focusses on the first
effect of interference present in ensemble-averaged multiple scattering of light. The sum
of most-crossed diagrams (Eq. 2.31), in addition to the ladder contribution, is retained:
〈R〉 = 〈L〉+ 〈C〉. Otherwise, the same approximations are made as in the previous sections,
so that the calculation of the Ladder contribution itself remains true,i.e., following the
diffusion equation, Eq. 2.53.

For the derivation of the EBS in this section, point scatterers are considered. The sum-
mation of the ladder terms in space coordinates, and for point scatterers
t(r ′, r , ω) = δ(r ′ − R)δ(r − R)t(ω) (from Eq. 2.13), can be written8

〈L(r1, r2, r3, r4)〉 = δ(r1 − r3)
[
ρ |t(ω)|2 δ(r1 − r2)δ(r1 − r4) (2.68)

+ F(r1, r2)δ(r2 − r4)
]
.

The ladder sum is here described as the first order scattering, explicitly written in the case
of point scatterers, and the higher orders, summed inF(r1, r2), where the incoming and
outgoing space coordinates have been factorized out. This factorization is only possible
in the case of point scatterers, where the T-matrix is proportional to a Dirac delta function
of the position of the scatterer. The intensity Green function in the slabF(r1, r2) is made
explicit later on.

8The original Ansatz was presented by Tsang and Ishimaru [125–127].
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2.6 Enhanced backscattering

The solution for the most-crossed diagrams is very easy thanks to a trick. By taking
the most-crossed diagrams of Eq. 2.31 and rotating the bottom line by 180◦, the ladder
diagrams are recognized, with the exception of the first order term. This rotation implies
that〈C〉 is equal to〈L〉, minus the first order term, where bottom coordinatesr3 andr4 are
swapped:

〈C(r1, r2, r3, r4)〉 = F(r1, r2)δ(r1 − r4)δ(r2 − r3). (2.69)

The physical meaning of this trick to solve for〈C〉 is time symmetry. A light path and
its time reverse have the same optical length. If the origin and the end of a path are at the
same location, and if the time reverse of the path is distinct from itself, then the two fields,
along each path, will interfere constructively at the origin. Constructive interference means
having twice as much intensity than would have been measured without interference. The
Green function〈C〉 has here the role of doubling the intensity where time reversed paths
interfere.

According to Eq. 2.27, for the intensity of light to be calculated, the incident field, the
averaged Green function and the intensity propagator〈R〉 have to be known.

The incident field in the medium is the coherent beam:

〈ψinc(r1)〉 =
√

I0 exp(iK i · r1), (2.70)

whereK i ≈ k i + iẑ/(2`scµi) andk i is the wave vector of the incident field on the medium.
The factorµi ≡ cosθi takes the incident angle into account. The exponential decrease in
depth is faster at a higher incident angle, and leads to the term`scµi for the extinction of the
incident beam. The intensity of the incident wave isI0.

Knowing the field Green function in free space (Eq. 2.5) and in the material (Eq. 2.23),
the Green function for backscatteringgb, wherer1 is far before the slab andr2 inside,
is [96,97]

〈gb(r1, r2)〉 ≈ −
exp(−ik0r1)

4πr
exp(iKb · r2), (2.71)

wherer2 � r1, Kb ≈ ks + iẑ/(2`scµs) andks is the wave vector of the field scattered out of
the medium. The scattered angle is taken into account byµs ≡ cosθs, equivalently as for
the incident field above.

The bistatic coefficientγ(µi , µs) is used to describe the scattered intensity in a normal-
ized way. The coefficient is calculated for given incident and scattered directions, for a
normalized incident intensity, corrected for the distance to the scattering medium and the
observed areaAµi :

γ(µi , µs) ≡
4πr2

I0Aµi
〈I (r )〉 ≡ γs(µi , µs) + γ`(µi , µs) + γc(µi , µs), (2.72)

where the bistatic coefficient has been split into three parts corresponding respectively to
the single scattering (first term in Eq. 2.68), the rest of the ladder contribution (second term
in Eq. 2.68), and the most-crossed diagrams (in Eq. 2.69).

Using the definition of the bistatic coefficients (Eq. 2.72), the intensity as a function of
the intensity propagator〈R〉 (Eq. 2.27), the approximation〈R〉 = 〈L〉+ 〈C〉, the expressions
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for 〈L〉 and〈C〉 for point scatterers (Eqs. 2.68 and 2.69), the incident field in Eq. 2.70 and
the backscattering Green function in Eq. 2.71, the following equations are found:

γs(µi , µs) =
µs

µs + µi

[
1− exp

(
−

L
`

2v
)]

(2.73)

γ`(µi , µs) =
1

4πµi

∫ L

0

∫ L

0
F(z1, z2,q⊥ = 0) exp

[
−

1
`

(
z1

µs
+

z2

µi

)]
dz1dz2 (2.74)

γc(µi , µs) =
1

4πµi

∫ L

0

∫ L

0
F(z1, z2,q⊥) cos

[u
`

(z1 − z2)
]

(2.75)

×exp
[
−

v
`

(z1 + z2)
]

dz1dz2,

where the shorthandsu, v andα are defined as

u ≡ k0`(µi − µs), v ≡
1
2

(
1
µs
+

1
µi

)
, α ≡ q⊥`, (2.76)

and where the Green functionF(r1, r2) is Fourier-transformed on thex andy components
only, to take advantage of the translation invariance along those two directions:

F(z,q⊥) ≡
∫

F(z, r⊥) exp(−ir⊥ · q⊥) dr⊥. (2.77)

The coefficientγs corresponds to light paths which only scatter once. The EBS coneγc

does not have any contribution from the single scattering. Indeed, the expected factor 2
in intensity at exact backscattering compared to the case of diffusion without interference
originates from distinct time-reversed paths. At exact backscattering, whereks = −k i , the
path which scatters only once is its own time reverse. The constructive interference which
leads to the EBS does not happen for single scattering. Without taking into account the
single scattering, or any breaking of time symmetry, the enhancement factor has to be 2,
because of fully constructive interference.

In order to proceed with the integration of Eqs. 2.74 and 2.75, the intensity Green
function for the slab,F(r1, r2) has to be found. In an infinite medium, this Green function
is described by the diffusion equation, and therefore isGd(r ) in Eq. 2.56.

The description of diffusion in a bounded material requires boundary conditions, like
the mixed conditions of Eqs. 2.58 and 2.59 or Dirichlet conditions, Eq. 2.64. The case of a
semi-infinite diffusive material is considered. Only the interface atz= 0 is retained, which
requires only one boundary condition. The Green function for the semi-infinite case with
transparent interface is calculated from the infinite-medium Green functionGd by subtract-
ing the mirror image ofGd from a trapping plane [99], likeGd(z1−z2)−Gd(z1+z2+2ze). The
trapping plane is where the energy density is extrapolated to 0, at one extrapolation length
ze outside the medium. This mirroring derives from the Dirichlet boundary condition of
Eq. 2.64. In the case of a finite reflectivity at the interface, the mixed boundary condition
Eq. 2.58 is taken. The mirror image is taken from the interface itself and weighted by the
fresnel reflection coefficient, which, following reference [98], is

F(z1, z2,q⊥) = Gd(z1 − z2,q⊥) +
zeq⊥ − 1
zeq⊥ + 1

Gd(z1 + z2,q⊥). (2.78)
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2.6 Enhanced backscattering

The diffusion Green function has been found in the previous section, Eq. 2.56, and can
now be Fourier transformed along thex andy coordinates (see Eq. 2.77) as

Gd(z,q⊥) =
exp(−zq⊥)

2q⊥
. (2.79)

After the introduction of the Green function for the semi-infinite medium, Eq. 2.78
into the bistatic coefficients, Eqs. 2.74 and 2.75 and the straightforward integration, the
coefficients read

γ`(µi , µs) = 3µs

(
τe +

µsµi

µs + µi

)
(2.80)

γc(µi , µs) =
3

2µiv
1

(α + v)2 + u2

(
1+

2vτe

1+ τeα

)
, (2.81)

whereze ≡ τe` and the other shorthands were defined in Eq. 2.76.

2.6.2 Physics behind the EBS line shape

Eq. 2.81 for the line shape of the EBS reduces to the well-known result [96, 121] for
τe = 2/3. Indeed, in the absence of reflection at the interface, using the mixed boundary
condition at the interface (Eq. 2.58) is equivalent to taking a trapping plane, or Dirichlet
condition, at an extrapolation length distance from the interface (Eq. 2.64).

The generalization of the EBS line shape to an interface with internal reflection has
been initially presented by Lagendijket al. [98], and popularized by Zhuet al. [128],
although the first detailed and almost exact derivation was given by Den Outer [97]. A
slight error in this last work prevented a fully satisfying result, since the EBS cone in the
absence of single scattering was found to have an enhancement factor bigger than 2 for
the reflecting interface. The derivation presented here, which leads to Eqs. 2.80 and 2.81,
retain the enhancement factor of 2 when the single scattering contribution is neglected.
Exact backscattering is given by equal incident and scattered angle,θi = θs, and forα = 0.

γ`(µi = µs ≡ µ, α = 0) =
3
2
µ(µ + 2τe) = γc(µi = µs ≡ µ, α = 0). (2.82)

Fig. 2.3 shows the line shape of EBS, normalized toγ`(µ = 0, α = 0), for a given mean
free path (k0` = 10) and for different reflectivity coefficients (̄R= 0 up toR̄= 0.8).

It had been concluded by Den Outer [97] that an internal reflectivityR̄ decreased the
width of the EBS cone asθFWHM → θFWHM(1− R̄). However, as can be seen from the right
inset of Fig. 2.3, the EBS width is not exactly linear in̄R. A better description can be seen
from the left inset of Fig. 2.3, where the inverse EBS width is found practically linear in
the extrapolation ratioτe. According to the exact derivation, the transport mean free path
is related to the EBS width and the internal reflectivity coefficient as

` ≈
λ0

2π
0.7

θFWHM

/
[1 + (τe − 2/3)× 0.355]. (2.83)

Apart from the width of the EBS cone, information can be found from its top and
from the enhancement factor. The enhancement factorE is defined as the intensity at exact
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Figure 2.3: Calculated line shapes of EBS fork0` = 10 and different reflectivity coefficients̄R.
From top to bottom curve, R=0, 0.2, 0.4, 0.6, 0.8. Left inset, inverse of calculated full width at half
maximum,1/θFWHM, normalized to 1 forτe = 2/3 versus extrapolation ratioτe. Right inset,θFWHM,
normalized toR̄= 0 versus the internal reflectivitȳR.

backscattering normalized to the intensity without interference at backscattering.E reaches
the theoretical value of 2 only when time reversal of all light paths which contribute to the
backscattering is preserved [17]. Experimental artifacts [97, 129] can reduce the enhance-
ment factor by preventing symmetrical time-reversed paths to be detected. From Eq. 2.73,
the single scattering is found to reduce the enhancement factor because of the lack of dis-
tinct time reverse (see also [96]). The single scattering contribution can be completely
filtered out by using the helicity-preserving channel [130],i.e., when the incident and scat-
tered polarizations are circular and equal9. If a light path inside the sample contains recur-
rent scattering,i.e., loops, a distinct time reverse is also not present, irremediably reducing
the enhancement factor from stronger scattering samples [131]. Time symmetry can be
broken by use of a magnetic field thanks to the Faraday effect [132,133], thereby reducing
the enhancement factor at will. Brownian motion, if quick enough, implies that the scatter-
ers are not in the same configuration for a path and its time reverse. Macroscopic systems,
as well as cold atoms, are far from displaying a Brownian motion quick enough to effec-
tively break time symmetry. Extra effects such as absorption, finite size of the medium,
and localization, which impose a limit on the path length distribution, do not break the time
symmetry and therefore do not reduce the enhancement factor. Absorption and finite size
can be included in the derivation of the EBS line shape [96, 121]. Both effects cut off the
long light paths contributing to the EBS cone, therefore rounding its top. The amount of
rounding can be qualitatively described by the angle∆ΘR at which the line shape differs
from the the triangular shape of Eq. 2.81. In presence of absorption with diffuse absorption

9The backscattering off a mirror symmetrizes the incident circular polarization. Seen behind helicity preserv-
ing polarizers, a mirror, or in this case a single scattering in the backward direction, remains black.
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lengthLa and for a slab of thicknessL, this rounding angle∆θR is found to be [83,96]

∆θR =
1

k0La
coth

(
Lex

La

)
. (2.84)

If the absorption is negligible,La� Lex, the rounding is linear in the inverse thickness,
∆θR = 1/(k0Lex). If the absorption is predominant,La � Lex, the rounding is constant,
∆θR = 1/(k0La).

Localization of light also modifies the distribution of path lengths, and is expected to
change the top of the EBS cone. According to the scaling theory of localization, the top of
the EBS cone [134–136] gets more rounded but only looses its cusp passed the localization
transition.

2.7 Conclusions

According to multiple-scattering theory, the strong interaction of light with an infinite, in-
homogeneous and disordered material leads to the diffusion equation, provided interference
effects are neglected and successive scattering events are independent. Within the diffusion
regime, a stationary measurement depends on the transport mean free path, whereas a dy-
namic measurement depends on the diffusion constant. Interference effects in ensemble-
averaged independent multiple scattering amount to the EBS, an increase in intensity re-
flected around the backscattered direction. The main information from an EBS cone is
extracted from its width, which is related to the transport mean free path. Additional infor-
mation can be gained from the careful analysis of the top of the EBS cone, such as finite
thickness, absorption, or localization.
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Chapter 3

Chemistry of porous
gallium phosphide

3.1 Introduction

Anderson localization of light necessitates a strongly-scattering disordered material. Strong
scattering occurs in inhomogeneous materials where the variations in refractive index are
large, and the spatial range of the variations is close to the wavelength of light. Some of the
strongest scattering materials are powdered semiconductors,i.e., aggregations of small par-
ticles. Powders of titanium dioxide [72,73], zinc oxide [74,75], gallium arsenide [76], ger-
manium [77–79] and silicon (Si) [80,81] have all been shown to scatter light very strongly
at visible or near-infrared wavelengths. The semiconductor with the highest refractive in-
dex in the visible, and therefore the largest chance to strongly scatter visible light, is gallium
phosphide (GaP). The band gap energy of GaP is 2.24 eV [137], corresponding to a wave-
length of 550 nm. The refractive index of GaP at 633 nm is 3.3 [137]. A strongly scattering
material can be made from GaP by grinding the single crystal into small particles. Such
grinding procedure has been suspected and shown to introduce extra absorption compared
to the single-crystalline semiconductor [77,80,138]. An alternative to grinding, and there-
fore powdered semiconductors, is the formation of pores inside the single crystal. Various
semiconductors have been made porous [139–141] by electrochemical etching1. In chem-
ical etching, a metal or semiconductor dissolves by direct transfer of valence electrons to
an etching agent in solution. In electrochemical etching, a voltage source and counter elec-
trode are used: by fixing the electrochemical potential of the sample, valence electrons can
be removed via the external circuit and the sample dissolves. The etching of Si is a very
active line of research, and a lot of different parameters modifying the porous structure in
Si have been studied: doping concentration [142, 143], etching potential [143, 144], tem-
perature [145,146], electrolyte [142,144] and magnetic field [147]. GaP has been initially
made porous by galvanostatic2 etching in hydrofluoric acid [148, 149] and at constant po-
tential in sulfuric acid [85, 87]. During etching of GaP, the material becomes porous and

1Equivalently called anodic etching.
2A galvanostatic etching imposes a constant current instead of a constant potential.
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GaP
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Figure 3.1: Cartoon of the anodic etch-
ing setup. The GaP sample is connected
through a conductive paste to the cop-
per plate, serving as anode,i.e., positively
charged compared to the electrolyte. The
electrolyte is in contact with the other side
of the sample only, thanks to the Viton O-
ring pressed between the sample and the
Teflon housing.

turns from a transparent orange-brown to a diffusive yellow. A strong specular reflection
can still be observed from the etched surface, due to a non-porous GaP top-layer. This
highly-reflective top-layer influences greatly the stationary diffusion experiments (see in
particular section 4.3.2). Photochemical etching, coupling the effect of an acid with the
absorption of light in the semiconductor, allows the selective removal of the top-layer. A
further increase of the size of the pores can be achieved by chemical etching, to broaden the
range of properties of strongly scattering samples. The current chapter is the prolongation
of, and inspired by, a previous study [81].

In the following section, the current understanding of the electrochemical etching of
GaP is reviewed. Several important parameters, among which the dopant density of the GaP
wafer, the etching reagent and the temperature, are studied and presented. In section 3.3, the
two extra processes, photochemical and chemical etching, are described and commented
on.

3.2 Electrochemical etching of GaP

Electrochemical etching with well-chosen etching conditions allows the formation of a
mechanically-stable porous layer inside the GaP wafer [85, 87]. For all experiments pre-
sented in this section, the following setup, depicted in Fig. 3.1, is used. GaP wafers
doped with sulfur3 are commercially available4. Polished wafers of doping concentration5

N = (0.5,5,6,7,15± 5) × 1017 cm−3 and (100)-oriented surface were used. The thick-
ness of the wafers is typically around 300µm. A piece of GaP is cleaved or diced from
a wafer, to obtain a sample of area around 1 cm2. The sample is then glued on a copper
plate with a conductive silver epoxy. The copper plate and the sample are enclosed in a
Teflon housing, leaving a circular opening of 5.5 mm in diameter in the front face of the
sample. A thick Viton6 O-ring is pressed between the GaP sample and the Teflon housing
to ensure that the inside of the Teflon housing is water-proof, and to avoid a short-circuit
between the copper plate and the electrolyte. The sample is sandwiched between the cop-
per electrode and the electrolyte, in which the whole Teflon housing is immersed. The

3Sulfur is an electron donor, and therefore GaP wafers doped with sulfur are n-type semiconductors.
4Suppliers are University Wafers, Atomergic Chemetals, Marketech and Ramet Ltd.
5The wafer doping concentrations are specified by the suppliers.
6Teflon and Viton are polymers and very resistant against chemicals.
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3.2 Electrochemical etching of GaP

Figure 3.2: Cartoon of the energy diagram of the con-
duction (CB) and valence (VB) bands of a semiconduc-
tor. When the semiconductor is in contact with an elec-
trolyte, the two bands are bent. When the bending is strong
enough, electrons can tunnel between the VB and CB, and
therefore produce the holes necessary for etching at the in-
terface with the acidic solution.
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electrolyte is connected to a platinum sheet, of area∼ 2 cm2, working as counter electrode.
The potential between the two electrodes is set by a power supply, and the current flowing
through the electrodes is monitored. The electrolyte is typically an 0.5 mol/L aqueous sul-
furic acid solution (H2SO4), although different electrolytes can also be used to produce a
porous structure. The temperature of the whole cell is kept constant by a thermostat, and
usually at 21◦C. In section 3.2.3, a study of the anodic etching vs. temperature is presented.

3.2.1 Electrochemistry of GaP

The dissolution of GaP into an acid follows the reaction equation [85,87]

(GaP)n + 6h+ → (GaP)n−1 +Ga(III) + P(III). (3.1)

The valence-band holes h+ are produced in the case of the anodic etching by the tunneling
of electrons from the valence to the conduction band. Indeed, as can be seen from Fig. 3.2,
the valence and conduction bands of a semiconductor are bent at the interface with an elec-
trolyte. When the electrolyte is at a lower potential than the semiconductor, the valence and
conduction bands in the bulk of the semiconductor shift toward lower energy. When the
potential difference between the semiconductor and the electrolyte is large enough7, elec-
trons can tunnel from the valence to the conduction band, leaving holes behind. Under the
influence of the electric field, the electrons move toward the bulk of the semiconductor, and
the holes stay at the surface. Therefore, a relatively high concentration of holes is created at
the surface of the semiconductor, where they are used to dissolve the semiconductor. The
region in which the semiconductor bands are bent is the depletion layerLdep, and its width
is [150]

Ldep=

√
2εε0

eN

(
V − Vf b

)
, (3.2)

whereεε0 is the electrical permittivity andN the donor density of the semiconductor,e the
elementary charge,V the applied potential, andVf b the potential at which the bands are
flat. This flat-band potential depends on the semiconductor electrode and the electrolyte.
For GaP in an 0.5 mol/L aqueous sulfuric acid solution,Vf b ' −1.2 V [86].

In order to characterize the behavior of a GaP electrode in an electrolyte, a current-
density versus potential (or i-V) curve is measured. The potential between the two elec-
trodes (GaP on copper and platinum in electrolyte) is slowly scanned, at a rate of 50 mV/s,
between 0 and up to a maximum of 35 V. The current is measured and normalized to the

7The potential difference, above which the tunneling of electrons is allowed, is called the breakdown potential.
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Figure 3.3: Typical current density-potential plot for a GaP electrode in 0.5 mol/L aqueous sulfuric
acid solution. The potentialV is scanned between 0 V and 19 V. The GaP wafer hasN = 6×1017 cm−3.
In this system, a higher current density means a higher rate of etching.

surface area of the sample in contact with the electrolyte. Fig. 3.3 shows an example of
such an i-V curve for a wafer of doping concentrationN = 6× 1017 cm−3 in an 0.5 mol/L
aqueous sulfuric acid solution. A GaP electrode in sulfuric acid solution typically presents
three potential ranges. In the region I of Fig. 3.3, at low potential, no etching occurs be-
cause the band bending is too small to allow the tunneling of electrons from valence to
conduction band. Region II starts at the breakdown potential. Above the breakdown poten-
tial, electrons tunnel to the conduction band, and valence holes dissolve in the electrolyte.
The anodic current increases with increasing potential. In region II, pores with size in the
range 50–200 nm are produced. At even higher potential, aboveVmax (in region III), the
current density drops to a low value before increasing slowly with potential. This decrease
in current density is characteristic of the passivation of the GaP electrode, due to the forma-
tion of an oxide layer. A higher potential leads to a higher etching rate, but also to a higher
rate of oxide formation. The potential of highest current densityVmax marks the transition
between the dissolution limited by the breakdown charge transfer and the dissolution lim-
ited by the oxide passivation. The potentialVmax is found to be characteristic of the doping
concentration of the GaP electrode and the electrolyte. In 0.5 mol/L sulfuric acid solution,
Vmax decreases with increasing doping concentration, as can be seen in Fig. 3.4.

3.2.2 Formation of porous GaP

At a constant potential, between the breakdown potential (∼ 3 V) and the potential of
highest current densityVmax, (i.e., in region II of Fig. 3.3) a porous structure is formed.
A scanning electron microscope (SEM) image of a typical example of a porous structure
is shown in Fig. 3.5. In region II, the potentialV applied to the GaP electrode is not
by itself enough to begin the dissolution. Etching starts at defects on the surface of the
GaP electrode, where the electric field is enhanced [87]. The enhancement of the electric
field makes possible the tunneling of the electrons to the conduction band and therefore
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3.2 Electrochemical etching of GaP

Figure 3.4: Potential of maximum
current density for GaP electrodes
of different doping concentration
in 0.5 mol/L sulfuric acid solution.

the dissolution of GaP in the electrolyte. As soon as pits in the surface are formed due
to defects, the electric field is additionally enhanced by the curvature of the surface. The
field enhancement is higher at the pore tips than at the pore walls. The pores therefore
tend to grow longer, at their tip. When the field enhancement is too high, an oxide layer is
formed that passivates the pore tips. Etching can now only occur close to the tips, where the
field enhancement is just smaller. The etching does not always go on along the pore tips and
therefore leads to branching of the pores [81]. The very irregular pattern of pores in Fig. 3.5
is due to this branching. To the eye, porous GaP is an opaque bright-yellow material.
Bare GaP itself is transparent to visible light above 550 nm, and looks orange-brown. The
porous structure of GaP scatters light very strongly (see following chapters). The color
of porous GaP is given by reflected light instead of the transmitted light through the bare
GaP. In reflection, light can travel a very short path in the material before escaping, and the
absorption in these short paths is minimal. Reflected light has therefore more frequency
components from the green part of the spectrum, below 550 nm, than transmitted light.
With increasing scattering strength, the porous GaP samples look more yellow.

Anodic etching of GaP in 0.5 mol/L sulfuric acid solution allows the formation of a
homogeneous layer of porous material. The thickness of the porous layer is determined by
the etching time, or equivalently the total etching charge [151], and can be made at will
between a few microns and the thickness of the wafer (∼ 300 µm). Because the pores
are initiated at pits on the surface, the surface itself is scarcely porous. This ‘non-porous’

Figure 3.5: SEM image of a longitudinal
cross section of a porous structure. The GaP
wafer with N = 5 × 1017 cm−3 was etched
at 14 V in 0.5 mol/L sulfuric acid solution.
The pores (darker to black regions in the pic-
ture) grow from the bottom of the picture.
Scale bar = 1µm.
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Figure 3.6: Average pore wall thickness (a) and pore diameter (b) of a range of porous samples (dif-
ferent doping concentration and etched at different potentials, in 0.5 mol/L sulfuric acid) compared
to the width of the depletion layerLdep.

top-layer has a thickness∼ 200 nm. The naked eye can easily detect the strong specular
reflection from the top-layer. Such a top-layer has to be removed in order to simplify the
analysis of the optical measurements (see section 4.3.2). The removal of the top-layer is
described further in section 3.3.1.

The typical size of the pores is of particular interest to the studies of light scattering.
The tangential growth of a pore is limited by the vicinity of other pores. Two pores next
to each other will grow in diameter up to the point where their depletion layers overlap. In
the GaP wall between two pores which are less than twice the width of the depletion layer
apart, the electric field is no longer enhanced, so that the tunneling of the electrons, and
therefore the etching, stops [144, 152]. In Fig. 3.6 the thickness of the pore walls and the
pore diameters in porous samples are compared to the depletion layer width (see Eq. 3.2).
The range of porous samples spans different doping concentrations (5–15×1017 cm−3) and
voltages (up toVmax). Both characteristic lengths of the porous structure (pore diameter
and wall thickness) are close to the width of the depletion layerLdep in the range of high
doping concentration (above5 × 1017 cm−3) and low potential (the maximumVmax for
these doping concentrations is 15.1 V). The wafer of lowest doping concentration available
(N = 0.5× 1017 cm−3), etched in sulfuric acid solution at 32 V, has a much wider depletion
layer (Ldep = 0.89 µm) but its porous structure does not have a much bigger characteristic
length (wall thickness= (186±55)µm and pore diameter= (194±58)µm). Unfortunately
the depletion layer width cannot easily be tuned between 0.2µm and 0.9µm. Indeed, hardly
any GaP wafers of intermediate doping concentration (1–4 × 1017 cm−3) are available.
Pores in the GaP wafer with low doping concentration could not be obtained at all below
30 V. The largest pore size reliably attainable by anodic etching of GaP in sulfuric acid is
200 nm. Section 3.3.2 describes a method to further increase the diameter of the pores by
an additional etching step.

It can be argued that the limitation in the maximum pore size obtained by anodic etch-
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3.2 Electrochemical etching of GaP

ing of GaP is due to the choice of electrolyte. Apart from 0.5 mol/L sulfuric acid solution
(which was used to produce all the samples presented in this thesis) both concentration and
nature of the acid in the electrolyte can be changed. Two other acids, namely nitric acid (0.1
and 1 mol/L HNO3) and phosphoric acid (1 mol/L H3PO4) and a lower concentration of
sulfuric acid (0.05 mol/L) were tested as electrolyte for anodic etching of GaP. Comparable
results are obtained using these different acids and concentrations [153]. The main differ-
ence between etching at different concentrations is the rate of dissolution of GaP. Within the
same potential range in the three different acids, comparable porous structures, including
pore sizes, are obtained. Nevertheless, in nitric acid, the oxide-formation regime (region III
in Fig. 3.3) does not occur. The porous structure formed in nitric acid at potentials higher
than theVmax found in sulfuric acid is not mechanically stable: the structure crumbles as a
powder when the sample is extracted from the etching setup. The samples etched in nitric
acid at high potential are therefore unusable.

Apart from the size of the pores, an important parameter of the porous structure is its
anisotropy. Of course, the pores in GaP are grown from the interface with the electrolyte
in a direction normal to the surface of the wafer. As can be seen from Fig. 3.5, the porous
structure has an obvious preferential direction. Chapter 6 describes the spatial anisotropy in
multiple light scattering from such anisotropic porous structures. It has been qualitatively
observed that etching at higher potential leads to a more isotropic structure.

3.2.3 Temperature dependence

Temperature is a parameter which influences the rates of chemical reactions. The law of
Arrhenius states that the rate of a chemical reaction scales withexp(−Ea/kBT), where Ea
is the activation energy of the reaction,kB the Boltzmann constant, and T the tempera-
ture. According to studies on the anodic etching of Si [145, 146], the temperature indeed
increases the rate of etching. It was suggested [81] that increasing the temperature of the
electrolyte would accelerate the dissolution of the passivating oxide layer in the etching
of GaP. The potentialVmax at which the etching dynamics changes from charge-transfer
limited to oxide-formation limited should therefore increase. According to the width of the
depletion layerLdep (see Eq. 3.2) and the pore size dependence in the rangeLdep = (0.05–
0.25)µm, etching at a higher potential (up toVmax) should increase the size of the pores.

A GaP wafer of doping concentrationN = 7× 1017 cm−3 was etched in 0.5 mol/L sul-
furic acid solution, at a constant temperature in the range 20–60◦C. The potentialVmax of
highest current density was found to be independent of temperature, within the experimen-
tal uncertainty (∼ 0.2 V). The current density, at a given potential, increased exponentially
with temperature. Fig. 3.7 shows the temperature dependence of the current density at
11.2 V =Vmax. From the fit to Arrhenius law in Fig. 3.7, the activation energy of the etch-
ing reaction is found as Ea = (0.24± 0.03) eV, comparable to the value found for Si [145].
The etching mechanics are therefore expected to be similar for Si and GaP.

The distribution of pore size in the GaP samples was found to be independent of the
etching temperature, within the experimental accuracy (' 5%). Etching GaP at a higher
temperature leads to a faster rate of the reaction, but no change in the porous structure.
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Figure 3.7: Current density (in log-
arithmic scale) versus the (inverse)
temperature of the electrolyte. The
solid line is a fit to Arrhenius law,
giving the activation energy Ea of the
chemical reaction.

3.2.4 Electroluminescence

Although a typical anodic etching experiment is done in the dark, we observed that the
porous GaP layer produces light during etching. Further experiments [91] showed that
electrons excited above the breakdown potential give rise to a broadband ‘electrolumines-
cence’ at the pore tips. This luminescence covers a broad spectrum, 450 nm to at least
1 µm. As the thickness of the sample increases during etching, light produced at the pore
front has to cross the multiple scattering layer before escaping. It is possible to argue that
monitoring the luminescence spectrum as a function of time (i.e., thickness) allows anin
situ measure of the total transmission through the sample [154]. At a wavelength below
the band gap of GaP, absorption dominates and an exponential decay with the thickness
of the porous layer is found. Above the band gap, absorption is negligible, and the total
transmission follows the theoretical expectation8 in the diffusion regime (see Eq. 2.62).
The transport mean free path of the diffusive porous material can be determined, provided
the extrapolation ratio (i.e., the interface property, see chapter 4) of the sample is known,
or assumed. Of course, the porous sample is infiltrated with water during etching, which
reduces the index contrast of the scatterers, and therefore greatly increases the transport
mean free path of the filled sample. Measurements on the dry and wet samples are not the
same. Nonetheless, such a measurement in a filled sample is important to ensure that a less
strongly scattering sample fulfills the diffusion approximation [83].

3.3 Further chemical processing of porous GaP

3.3.1 Photochemical etching

The electrochemical etching of GaP produces a porous layer. In the thin non-porous top-
layer (∼ 200nm), a small density of pits is present, indicating the points at which the pores

8It can be argued that the case of a light source exactly on the interface of the diffusive medium, as the
luminescence from the pore tips can be described, does not exactly follow the geometry for the total transmission
presented in the theory chapter. The applicability of the total transmission expectation (Eq. 2.62) is not discussed
in reference [154].
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3.3 Further chemical processing of porous GaP

start to form. A SEM picture of the top of a typical sample can be seen in Fig. 3.8a. The
density of pits depends on the polishing of the surface, the doping concentration of the
wafer and the anodic etching potential. The presence of the top-layer is obvious to the
naked eye because of the strong specular reflection it produces. Sections 4.3.2 and 5.2.1
both show how much the top-layer influences the diffusion measurements performed on
the porous samples.

In order to remove this top-layer either pre- or post-processing of the anodically-etched
sample has to be done. Before anodic etching, an increase of the density of surface defects
[155] leads to an increase in the density of pits and therefore increases the porosity of
the top-layer, effectively merging it with the bulk porous structure. After anodic etching,
further chemical polishing, using an aqueous bromine (Br2) solution, removes the top-layer
altogether [85]. Chemical polishing with the Br2 solution is very fast, and the removal of
the top-layer cannot be easily controlled in this way.

Control over the removal of the top-layer is obtained by using photochemical etching
[81]. Apart from the potential in anodic etching, electron-hole pairs can be produced by
absorption of light in the semiconductor. These valence holes are subsequently used to
oxidize the GaP, which dissolves in the acid, as in section 3.2. The beam from an argon-ion
laser of wavelength 460 nm, and power 20 mW, hits the surface of the porous sample, at an
incidence angle∼ 45◦. The porous sample is immersed in a solution consisting of 5 parts
of 0.5 mol/L aqueous sulfuric acid solution and 1 part of 30% aqueous hydrogen peroxide
(H2O2). The wavelength of the laser being smaller than the absorption edge of GaP, the
incident light is absorbed by the sample on short distances. Although the absorption length
of GaP at 460 nm is about 3.5µm [137], most of the incident light is absorbed in the top-
layer, since the underlying layer is diffusive. Most of the electron-hole pairs are therefore
created within the top-layer. The free electrons reduce H2O2 to produce an ion OH− and
a radical OH• [156]. The radical can further be reduced by hole-injection into the valence
band, so that the original electron reacts with H2O2 and produces a hole in the valence
band:

H2O2 + e− → 2OH− + h+. (3.3)

The photogenerated and injected holes both contribute to the dissolution of GaP in the
sulfuric acid solution (see Eq. 3.1). The GaP is therefore selectively etched where the
incident beam is absorbed, namely in the top-layer.

The specular reflection of the incident beam on the porous GaP sample is monitored
during the photochemical etching. The specular reflection during photochemical etching of
a porous GaP sample (of doping concentrationN = 7× 1017 cm−3 and anodically etched at
a potentialV = 11V) is shown in Fig. 3.8. The initial intense specular reflection gradually
decays to a low value, after typically 20 minutes of photochemical etching. The laser beam
is then blocked and the sample removed from the solution to stop the etching. The low
value of the reflection at the end of etching is due to the small contribution from the dif-
fuse reflection. The specular reflection of samples from well-polished GaP wafer displays
interference fringes at the beginning of the photochemical etching. The reflection from the
front and back surface of the top-layer gives rise to alternating constructive and destructive
interferences as the thickness of the top-layer is reduced.

In Fig. 3.8 two SEM pictures of the surface of the porous sample before and after
photochemical etching are also displayed. Before removal of the top-layer, in Fig. 3.8a,
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a

Pits

b

Figure 3.8: Photochemical etching of porous GaP. On the left, the specular reflection of the surface
of a typical sample vanishes with etching time. The reflection is normalized to the initial value. On the
right, SEM pictures of a porous GaP sample before (a) and after (b) photochemical etching, where
the top-layer is etched away. Scale bars = 2µm.

the surface of the sample is mainly flat, with occasional pits. After removal of the top-
layer, in Fig. 3.8b, the porous structure is uncovered. The thicker white lines in Fig. 3.8b,
spreading radially from the center of the image, are the walls between adjacent porous
domains. Enclosed by one such thick line is a porous structure originating from one single
pit, i.e., in fact, a single pore with numerous branches.

3.3.2 Chemical etching

As is seen in section 3.2.2, the pore size can easily be tuned from 50 nm to 200 nm via
the proper choice of GaP wafer and anodic etching conditions. One way to increase the
available range of pore size is to chemically etch the porous samples. As noted in the previ-
ous section on photochemical etching, free conduction electrons can reduce the H2O2 and
produce valence holes (see Eq. 3.3). These valence holes oxidize the GaP which slowly
dissolves in the sulfuric acid solution. Immersing a porous GaP sample inside the same
solution as for photochemical etching leads to a slow chemical etching of the porous struc-
ture [81], even without illumination from the argon-ion laser. The average diameter of the
pores increases uniformly in the whole sample. Note that chemical etching is much slower
than photochemical etching. Therefore, in the (relatively) short time needed to photochem-
ically etch a porous sample, the sample is hardly affected by chemical etching.

Increasing the pore size

In order to increase the diameter of the pores, a porous sample, after anodic etching to
produce the porous layer and photochemical etching to remove the top-layer, is immersed in
a solution consisting of 5 parts 0.5 mol/L H2SO4 and 1 part 30% H2O2. A Teflon tape with
an opening protects the non-etched part of the sample. In order to monitor the chemical
etching, the total transmission of a helium neon (HeNe) laser beam (at 633 nm) through the
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3.3 Further chemical processing of porous GaP

Figure 3.9: In situ total transmission of a HeNe laser beam (633 nm) through porous GaP during
chemical etching. Each curve corresponds to a different sample, labeled with the doping concen-
tration of the wafer (where 1≡ 1017 cm−3) and the anodic etching potential. The 4th curve was
chemically etched 14 times for 1.8 ks each time. Chemical etching increases the size of the pores. A
lower value of the total transmission typically means a more strongly scattering sample.

sample is measured as a function of etching time. In order to avoid two-photon absorption,
the incident beam is attenuated. Without attenuation, the absorption of the laser beam in
the sample leads to the faster, but depth-dependent, photochemical etching, which must be
avoided.

In Fig. 3.9 the total transmission through different porous samples is plotted as a func-
tion of chemical-etching time, and normalized to the initial transmission. Each curve corre-
sponds to a porous sample of different doping concentration, or etched at a different etching
potential. The curves are labeled as: (doping concentration in1017 cm−3, etching poten-
tial). From the sample chemically-etched for the longest time, the rate of chemical etching
is estimated to be∼ 6 nm/ks.

The total transmission of the HeNe laser beam through a sample of thicknessL filled
with water scales as̀(1 + τe)/L, where` is the transport mean free path of the porous
structure filled with water, andτe is the extrapolation ratio (see sections 2.5.1 and 4.2): a
property of the interface between water and the filled porous structure. A decrease of total
transmission is an indication that the transport mean free path of the filled porous structure
also decreases. Note that the mean free path has no bounds, whereas the extrapolation ratio
is typically in the range 1–3 and varies slowly with the effective refractive index of the
porous material,i.e., with the porosity of the sample (see section 4.4). The extrapolation
ratio decreases slowly with increasing porosity of the sample, and therefore decreases with
chemical-etching time. For typical samples, of thickness much bigger than the transport
mean free path, the change in thickness during chemical etching is negligible.

In Fig. 3.9, all but the leftmost curve decrease, go through a minimum, and increase
again if the chemical etching is continued. The leftmost curve, for the sample of high-
est doping concentration and smallest pore wall thickness (see section 3.2.2), does not go
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through a minimum but increases from the start. Since the diameter of the pores in the GaP
samples presented here is typically in the range 50 to 200 nm, their scattering strength is
expected to increase when the pore size is closer to the wavelength in the material,i.e., big-
ger. Pores are etched, and their diameter increases slowly. At the beginning of the etching,
the scattering strength therefore increases, and the total transmission decreases. Of course,
if the chemical etching goes on for too long, the porous structure completely dissolves,
and therefore its scattering strength decreases, the total transmission increases. There is an
optimal diameter of the pores, at a given pore density, where the scattering strength is the
highest. This optimal diameter corresponds to the minimum in total transmission during
chemical etching. In order to get the strongest scattering chemically-etched sample from a
given initial sample, the etching is stopped at the minimum in transmission. The leftmost
curve in Fig. 3.9 does not have a minimum since the optimal diameter of the pores for the
pore density corresponding to this sample is smaller than the pore diameter at the beginning
of the chemical etching.

Homogeneity of the chemical etching

The chemical etching allows the slow increase of the pore diameter of porous GaP sam-
ples. This etching method has been used [81] to increase the scattering strength of the GaP
samples. Unfortunately, a discrepancy between two optical measurements on chemically-
etched samples was found in reference [81]. Although thein situ total transmission of a
particular sample was found to decrease with chemical etching, the mean free path mea-
sured from EBS was seen to increase. Total transmission measurements are sensitive to the
scattering properties in the whole bulk of the sample. EBS is a measurement of reflected
light, which mainly probes a small layer (about a few mean free paths thick) of scattering
material, on top of the sample. It is very important to monitor the homogeneity of the
chemically-etched sample.

In the previous study [81], the chemical etching was set up as follows: the porous
sample was immersed in the H2SO4 solution, and the extra H2O2 was injected afterwards
in the acid solution. In that scheme, the H2O2 has to diffuse from the acid solution into the
pores of the sample. Such a diffusion process of chemical compounds is not instantaneous,
especially if no agitation is applied to the solution. The diffusion through the narrow pores
of the sample is an extra hindrance for the homogenization of the H2O2 concentration.

As a test of the uniformity of the chemical-etching rate, a sample, of doping concentra-
tion N = 7 × 1017 cm−3 and anodically etched at a potential of 6 V, is chemically etched
14 times for 30 min each time. The total transmission of these 14 subsequent etchings is
plotted, one after the other, in Fig. 3.9. A picture from an optical microscope of a cleaved
edge of the sample chemically etched 14 times is shown in Fig. 3.10. The porous layer
of this sample is∼ 200µm thick. The porous layer is obviously not homogeneous after
chemical etching. Two regions, of ill-defined interface, of barely etched pores (small pores)
and chemically-etched pores (bigger pores), are observed. The surface of the sample is not
flat due to the additional chemical etching close to the surface. In 30 min, the H2O2 has
only diffused about 100µm inside the porous structure. Relying on the diffusion of the
molecules in the solution to homogenize the acid concentration is therefore ill-advised.

In order to circumvent the problem of the homogeneity of the etching solution, the
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Figure 3.10: Optical image of the cross
section of a sample chemically etched 14
times for 30 min. The whole thickness
(∼ 300µm) of the sample is visible. The
porous region (top 200µm) is obviously
inhomogeneous due to a wrongmodus
operandiof the chemical etching. Scale
bar = 100µm.

bare GaP

small pores

bigger pores

mixing of the two components, H2SO4 and H2O2, has to be done before immersion of the
sample. The sample is only then immersed in the etching solution. Bubbles from air still
trapped inside the pores slowly rise from the surface of the porous sample. Lightly shaking
the sample provokes a flurry of bubbles to rise from the surface, after which the sample
is fully infiltrated with the etching solution. Chemical etching then proceeds at a uniform
rate across the whole sample. Porous samples chemically etched following this second
immersion procedure were found to be homogeneous.

3.4 Conclusions

Electrochemical etching of GaP allows the formation of a homogeneous porous structure
of well-defined thickness. Using different doping concentrations of the GaP wafer or etch-
ing potentials, one can tune the typical size of the pores in the range 50–200 nm. After
electrochemical etching, a top-layer of bare GaP remains, which can be removed in a con-
trolled way by photochemical etching. After photochemical etching, the porous sample has
well-defined optical properties. The size of the pores of a porous sample can be increased
by chemical etching. Following the right experimental scheme, the porous sample remains
homogeneous after chemical etching.
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Chapter 4

Diffusion at the interface

4.1 Introduction

Strictly speaking, diffusion does not extend up to the interface of a diffusive medium. So-
called skin layers [157], where light crosses the transition from ballistic to diffusive, are not
described by diffusion. Nonetheless, the careful treatment of the interface in the diffusion
regime allows analytical solutions to be found which are tested in special cases against the
more rigorous theory.

In section 2.4 the diffusion equation for the infinite medium (Eq. 2.53) is derived. In
section 2.5 the diffusion equation is applied to a slab, in order to obtain predictions for a real
experiment. Applying the diffusion equation to a finite medium requires the use of bound-
ary conditions, which are derived in the first section of this chapter, following Ref. [128].
A closely related subject to the boundary condition at an interface is the determination of
the angular dependence of light escaping the diffusive medium. Such an ‘escape function’
is described in section 4.2.2, and shown to depend only on the effective refractive index of
the diffusive medium. In section 4.3, the theoretical predictions are tested in the case of
strongly scattering slabs and shown to describe porous GaP samples very well. The third
section presents a study of the effective refractive index in a range of strongly scattering
samples with different geometrical and scattering properties. Effective medium theories
fail to account for the behavior of the refractive index versus porosity in strongly scattering
porous GaP samples.

4.2 Theory of the interface of a diffusive medium

In principle, the solution for the Green function of a finite system should be calculated by
considering the exact distribution of scatterers in the whole space. Most of space contains
no scatterers,i.e., vacuum. The diffusive medium is a region of space with a certain density
of scatterers. In such a description, the Green function gives the exact result for a finite
system, but is very difficult to solve. Indeed, in section 2.4, the statistical invariance by
any translation was a major help in order to derive the Boltzmann equation (Eq. 2.39)
and the diffusion equation (Eq. 2.53). An exact result for a semi-infinite slab containing

59



Diffusion at the interface

vacuum vacuumdiffusive medium

z = 0 z = L

(1-R)J -

J in = 0

J -

J + = R J -

Figure 4.1: Cartoon of the slab geom-
etry, a diffusive medium sandwiched by
vacuum, with interfaces atz = 0 and
z = L. The diffuse fluxJin = 0 corre-
sponds to the strict boundary condition
between free space and a diffusive mate-
rial. J+ = R̄J− is the boundary condi-
tion with averaged internal reflectivitȳR.
The fluxes are represented at the left in-
terface, but should be read as symmetri-
cal at the right interface.

point scatterers can be found within the radiative transfer equation, and is known as the
Milne problem [158]. It is more practical to use a diffusion Green function for the infinite
medium, apply boundary conditions to mimic the finite system at the interfaces, and only
consider the resulting solution within the finite medium.

The strict boundary condition for an interface between a medium with multiple scat-
tering and free space is that no diffuse light can enter the material through the interface.
The specific intensityP(ωc p̂, r ) (see Eq. 2.47) is the diffuse intensity at positionr and in the
directionp̂. The strict boundary condition can be written as

P(pin, r int) = 0 where

{
r int is on the interface and
pin pointing inside the material.

(4.1)

4.2.1 Boundary conditions to the diffusion equation

Within the diffusion approximation, the distribution of diffuse light is almost isotropic (see
the development ofP(p, r ) in first order ofp, in Eq. 2.47). It follows that the strict bound-
ary condition is impossible to satisfy within the diffusion approximation. An approximate
boundary condition can be considered, where the total fluxJin entering through the inter-
face has to vanish.

Jin ≡

∫
2π

P(pin, r int)(pin · ŝ) dpin = 0 where

{
r int is on the interface and
pin pointing inside the material.

(4.2)

The vector̂s is normal to the interface, pointing inside the material, andpin is integrated
over a half space, inward.

One refinement to this approximate boundary condition is that the total diffuse flux
J+ going inward from the interface is the reflection of the total diffusive fluxJ− going
outward to the interface. By denotinḡR the average reflectivity coefficient at the interface
the reflective boundary condition readsJ+ = R̄J− (See Fig. 4.1).

The diffuse fluxes can easily be evaluated in the case of isotropic1 and weakly-absorbing
scatterers (̀� `a). The flux scattered directly from a volumedV inside the medium to a
surfacedS on the interface is given by

dJdS =Wrad
ω (r, θ, φ) dV

vE

`

cosθ
4πr2

exp
(
−

r
`

)
dS, (4.3)

1The generalization to anisotropic scattering leads to renormalize the scattering mean free path as the transport
mean free path [9,159].
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4.2 Theory of the interface of a diffusive medium

where the spherical coordinates(r, θ, φ) are chosen, withθ the declination angle from the
z-axis andφ the azimuthal angle. The energy density in the volumedV, Wrad

ω (r, θ, φ) dV is
scattered isotropically and a fraction(cosθ/4πr2)dS flows toward the surfacedS. Only a
fraction exp(−r/`) will not be scattered betweendV anddS. The rate at which diffusion
occurs is the inverse of the mean free time, orvE/`.

Integrating Eq. 4.3 over the half spacez> 0 gives the outward fluxJ−:

J− =
vE

4π`

∫ ∞

0

∫ 2π

0

∫ π/2

0
Wrad
ω (r, θ, φ) exp

(
−

r
`

)
cosθ sinθ dθdφdr, (4.4)

which leads to

J− =
vE

4
Wrad
ω (z= 0)+

vE`

6
∂Wrad

ω (z)
∂z

∣∣∣∣∣∣
z=0

, (4.5)

where the dominant contribution to the integral of Eq. 4.4 comes from the first transport
mean free path, due to the exponential term. The diffusion approximation further allows
the use of the first-order Taylor expansion of the energy density along thez-axis in Eq. 4.5.
Performing the integration over thez< 0 half-space gives for the inward flux

J+ =
vE

4
Wrad
ω (z= 0)−

vE`

6
∂Wrad

ω (z)
∂z

∣∣∣∣∣∣
z=0

. (4.6)

The reflective boundary condition, linking the two fluxes, inward and outward, to the aver-
age reflectivity at the interface, now reads

Wrad
ω (z) − ze1

∂Wrad
ω (z)
∂z

= 0 atz= 0, (4.7)

with zei ≡
2
3

1+ R̄i

1− R̄i
` ≡ τei `. (4.8)

Performing the same steps for a half-space diffusive forz < L gives the second boundary
condition needed in the case of a slab:

Wrad
ω (z) + ze2

∂Wrad
ω (z)
∂z

= 0 atz= L. (4.9)

The quantityze is called the extrapolation length (andτe the extrapolation ratio) since
the mixed boundary conditions Eqs. 4.7 and 4.9 describe a vanishing extrapolation of the
diffuse intensity at a distanceze outside the interface. Eqs. 4.7 and 4.9 can equivalently be
written, in the elastic or weakly absorbing regime, as

Wrad
ω (z) = 0 at

{
z= −ze1

z= L + ze2.
(4.10)

Eq. 4.8 reduces toτe = 2/3 in the case of a fully transparent interface (R̄= 0). The solution
to the Milne problem, considering the radiative transport equation and the strict boundary
condition (Eq. 4.1), has the same qualitative behavior as here derived (Eq. 4.7) but with
a slightly different quantitative valueτe ≈ 0.7104 [104, 118]. Further approximation on
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the Milne problem allows the inclusion of a finite reflectivity at the interface and leads to
results equivalent to Eq. 4.8 [157].

The average reflectivity coefficient̄R can be quantitatively found by considering the
Fresnel reflection coefficients at the interface. A flat interface between two media of well-
defined refractive index is considered. Using an angular-dependent reflectivity instead of
J+ = R̄J− leads to

J+ =

∫ π/2

0
R(θ)J−(θ) dθ (4.11)

=
vE

2
Wrad
ω (z= 0)C1 +

vE`

2
∂Wrad

ω (z)
∂z

∣∣∣∣∣∣
z=0

C2, (4.12)

where Ci ≡

∫ π/2

0
R(θ) cosi θ sinθ dθ. (4.13)

Eq. 4.12 gives a similar mixed boundary condition as Eqs. 4.7 and 4.8, where the average
reflectivity coefficient is now explicit [128,159]:

R̄≡
3C2 + 2C1

3C2 − 2C1 + 2
. (4.14)

The angular reflectionR(θ) is the average over polarization of the Fresnel coefficients since
multiple scattering randomizes the polarization [160]. It is also possible to consider several
interfaces. In the case of a sample with an extra transparent layer on top of the diffusive
material, the extra reflections can be considered thanks to geometrical optics, according
to [159]

R(θ) =
Rab + Rbc − 2RabRbc

1− RabRbc
, (4.15)

whereRi j denotes the angular-dependent reflection coefficient between materials2 i and j.

4.2.2 Angular-resolved diffuse transmission

The extrapolation ratioτe is a very important parameter in the analysis of diffusion mea-
surements, as is obvious from previously derived diffuse total transmission (Eq. 2.62) and
EBS cone (Eqs. 2.80 and 2.81). The extrapolation ratio modifies the width of the EBS cone
(Eq. 2.83) although has a negligible effect on the EBS shape. The diffuse transmission, sta-
tionary or dynamic, is seen (Eqs. 2.62 and 2.66) to depend on the extrapolated thickness,
Lex ≡ L + `(τe1 + τe2). An unknown, or badly estimated, extrapolation ratio can easily lead
to an underestimation ofLex, more particularly noticeable for samples of thickness close
to the transport mean free path. Following measurements (see Fig. 4.4) show that the ex-
trapolation ratio can be greater than 10, and can therefore hardly be considered as a small
correction.

According to Eqs. 4.8 and 4.14,τe depends on the Fresnel coefficients and therefore
on the refractive index of the diffusive material. The effective refractive index can be cal-
culated according to theories [3] known as Lorentz-Lorenz [161], Maxwell Garnett [162]

2For example a colloidal suspension in a glass cell, in air: thenRab is the reflection at the interface air-glass,
andRbc is the reflection at the interface glass-colloid suspension.
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4.3 Measuring the index of refraction of porous media

or Bruggeman [163]. These effective medium theories consider various mixtures of two
components with known dielectric functions and volume fractions, but in the large wave-
length limit only. A more general, although numerical, approach lies in the so-called
Energy Density Coherent Potential Approximation [164–166], which allows the calcula-
tion of the refractive index of a mixture of scatterers of known scattering properties. The
samples which are used in this thesis and described in chapter 3 have pores of diameter
smaller but comparable to the wavelength. Such porous structures also present ill-defined
scatterers. Therefore porous GaP samples do not fulfill the assumptions for the effective
medium theories nor EDCPA. Experimental determination of the refractive index is usually
done by refractometry, interferometry [167] or speed-of-light measurement, all requiring
a sufficiently transparent medium at the given wavelength. The angular-resolved diffuse
transmission [93, 159] allows an experimental determination of the index of refraction in
diffusive materials.

According to the boundary condition of Eq. 4.7, the energy density can be approxi-
mated, close to the boundary atz= 0, by

Wrad
ω (r, θ, φ) =

Wrad
ω (r, π/2, φ)

ze
(r cosθ + ze). (4.16)

The flux just before leaving the diffusive material can be calculated thanks to Eq. 4.3 inte-
grated overdr anddφ, and within the approximation of Eq. 4.16:

dJ−(θ) =
vE

ze
Wrad
ω (r, π/2, φ)(` cosθ + ze) cosθ sinθ dθ. (4.17)

By crossing the interface, refraction fromθ to θe according to Snell’s law, and reflection
according to the Fresnel coefficientR(θ) will occur. Denotingµ ≡ cosθ andµe ≡ cosθe,
the escape functionE(µe), or the probability of light escaping the medium at an angleµe,
is [159]

E(µe)
µe
∝ (τe + µ)

[
1− R(µ)

]
. (4.18)

The proportionality constant is set by the normalization of this probability function. The re-
flection coefficientR(µ) is polarization-dependent, and gives two independent escape func-
tions, for polarization in and out of the incidence plane. In the case of non-polarized light,
the proportionality constant of Eq. 4.18 can be explicitly calculated [159] as (3n2

e/2n2
0),

wherene and n0 are the refractive index of the diffusive material and the surrounding
medium, respectively. This escape function model can be generalized to other reflectiv-
ity functions than derived by Fresnel, and has been successfully applied to photonic crys-
tals [45,168,169].

The extrapolation ratioτe depending only on the assumed reflectivity functionR(µ) (see
Eqs. 4.8 and 4.14), the escape function in Eq. 4.18 only depends on a single parameter, the
effective refractive index of the diffusive material.
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Figure 4.2: Cartoon of the angular-
resolved transmission setup. Diffuse light
transmitted through the sample is fo-
cussed on a detector via a lens (L). An
aperture (Ap) reduces stray light. A po-
larizer (Pol) allows the measurement of
one of the two polarizations, in (P) or out
(S) of plane. The escape function thus
measured allows the determination of the
effective refractive index of the diffusive
sample.

4.3 Measuring the index of refraction of porous media

4.3.1 Experimental setup

The setup used to measure the angular-resolved transmission (ART) [93] through diffusive
samples is sketched in Fig. 4.2. A collimated beam from a helium neon laser (633 nm)
impinges on the front side of the sample, where the GaP wafer remains. The incident po-
larization is not an issue for the diffuse transmission since after a few transport mean free
paths the polarization of diffuse light is scrambled. The coherent transmission and single
scattered light, if measurable in transmission, mainly retain the incident polarization. The
P polarization (electrical field in the plane of incidence) has more features than the S po-
larization (electrical field normal to the incidence plane), such as the Brewster angle. It is
therefore preferable to choose the incident polarization as S. The scattered light in trans-
mission from the sample is collected by a lens (f = 10 cm) at a distance of 90 cm from the
sample. The intensity of the scattered light is measured by a silicon photodiode in the focal
plane of the lens. Both polarizations of the scattered light are recorded, one after the other,
thanks to a polarizer. An aperture is used in front of the detector to reduce stray light and
background intensity. The combination of a chopper, modulating the intensity of the inci-
dent beam, and a lock-in amplifier further reduces the noise and the undesired background
of the measurement. The number of speckle spots falling on the detector in the stationary
setup is approximately 300. Further speckle averaging is typically done by spinning the
sample with the same axis as the incident beam, and integrating over time thanks to the
lock-in amplifier. The detector and collection optics are mounted on a goniometer, with
the sample at its center of rotation. The angular range of the goniometer is 180◦. A small
range of angles, at grazing incidence from the interface of the sample (θe ≈ π/2 or µe ≈ 0),
is blocked by the mounting of the sample.

The ART setup is first checked on a known, weakly scattering, sample. A colloid
suspension of polystyrene spheres in water, enclosed in a glass cell, is used. The low
volume fraction of the spheres (≈ 2%) and the index of refraction of polystyrene (n = 1.59)
ensures that the effective refractive index of the colloid is very close to that of plain water,
i.e., 1.33. The diameter of the spheres (426 nm) nonetheless induces a transport mean
free path smaller than the cell thickness (1 mm), since the solution looks milky white3.

3At least after sufficient shaking, to break the sedimentation of the spheres.
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4.3 Measuring the index of refraction of porous media

Figure 4.3: Escape function of a dilute colloid suspension in a glass cell. Measurements for both
polarizations (P circles, S squares) as a function of angle are presented. The theory of Eq. 4.18
for an effective refractive index of 1.33, covered by a layer of refractive index 1.51 is plotted, for
both polarizations (P dashed curve, S full curve). All curves are normalized to 1 atµe = 1. The
agreement between measurement and theory without adjusting parameters validates the ART method
to determine the effective refractive index of diffusive material.

The Brownian motion of the colloid has a typical time scale of 1 ms. Speckle is therefore
averaged very quickly in a stationary measurement, with an integration time of the order of
1 second. The cell is made of BK7 glass, with a known refractive index (ng = 1.51). The
measured escape function for this colloid is shown in Fig. 4.3.

The theoretical prediction for the escape function of this colloidal system is described in
previous section. Eq. 4.18 describes the shape of the escape function for a single interface.
Eq. 4.15 extends the model to a double-interface, as is needed in the case of the system
colloid–glass–air. This extension relies on the series of multiple reflections within the
middle layer (here, the glass), in a geometrical optics approach [159]. The only parameters
of the model describing this colloid system are the three refractive indices, of colloid, glass
and air, respectively 1.33, 1.51 and 1. The theory, considering the two interfaces and the
three known refractive indexes, is plotted in Fig. 4.3 without any free parameters. The very
good agreement between measurements and theory for the colloidal system validates the
use of the ART, along with the escape function theory in section 4.2.2, to determine the
effective refractive index of diffusive material. Fig. 4.3 shows that geometrical optics is
a good approximation for the two-interfaces escape function theory when the thickness of
the extra layer is much larger than the wavelength.

4.3.2 Measurements on strongly scattering samples

The ART setup is used to determine the escape function of strongly scattering samples,
made according to the methods described in chapter 3. A porous sample is prepared from a
GaP wafer of (sulfur) dopant density7× 1017 cm−3, anodically etched at 6 V in a solution
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Figure 4.4: Escape functionE(µe)/µe of a porous GaP sample after anodic etching, for both polar-
izations (P circles, S squares). The fit to the escape function theory gives an effective refractive index
ne = 2.79, or equivalentlyτe or R̄. The presence of the top-layer on the diffusive sample influences
greatly the escape function, and leads to a wrong refractive index.

of H2SO4, 0.5 mol/L. The thickness of the porous layer is213± 8 µm, and its porosity is
13%.

This one, and typical, sample will be used as an example throughout the rest of present
section. The escape function measurements on this sample are shown in Figs. 4.4, 4.5 and
4.6, respectively after anodic etching, photochemical etching and chemical etching. In each
graph of these 3 figures, a cartoon of the cross section of the sample is shown, with and
without top-layer, and with larger pores, respectively.

After anodic etching, porous GaP is diffusive and has a transparent top-layer. The
porous layer is grown sufficiently thick so that the coherent transmission is negligible. On
Fig. 4.4, the measurement of the porous sample still covered by the GaP top-layer is plotted,
along with the fit to the escape function theory, Eq. 4.18. The escape function fit considers
one interface, between an average medium, of indexne, and air. The measurements for
both polarizations on the anodically etched sample are well described by one single para-
meter, the effective refractive index, found asne = 2.79. Of course, this value can not be
taken as the refractive index of the bulk porous material, since the top-layer influences the
measurement. A high refractive index at the interface (such as 3.3 for the top-layer here)
dominates the shape of the escape function. Therefore, it is not possible to reliably fit the
measurements in Fig. 4.4 with the model with two interfaces (Eqs. 4.18 with 4.15) in order
to obtain the refractive index of the bulk. Although the effective refractive indexne = 2.79
does not contain useful information, the corresponding extrapolation ratioτe and internal
reflection coefficient̄R are relevant. It is possible to consider the fit to Eq. 4.18 as a fit on
the extrapolation ratio, which is well defined even in a multiple-interfaces system. This de-
termination of the extrapolation ratio allows further interpretation of optical measurements
(like total transmission, Eq. 2.62, or EBS width, Eq. 2.83). The wave vector of light in
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4.3 Measuring the index of refraction of porous media

Figure 4.5: Escape functionE(µe)/µe of a porous GaP sample after anodic and photochemical
etching, for both polarizations (P circles, S squares). The fit to the escape function theory gives an
effective refractive indexne = 1.63. The measured refractive index is now from the bulk.

the material, necessary to infer the parameterk`, is still not known since it depends on the
effective refractive index. A high value of the extrapolation ratio makes it dominate the
interpretation of optical measurements, and a better solution for interpretation is to remove
the top-layer.

From the measurement in Fig. 4.5, the refractive index of the bulk material of this
sample is found asne = 1.63. Using the two-interfaces model of the escape function (see
Eq. 4.15 and Fig. 4.3) for a system with a refractive indexne = 1.63, a transparent top-layer
of indexn = 3.3 and air does not give a good agreement with the measurements of Fig. 4.4.
The GaP top-layer of anodically etched porous GaP is 200 nm thick. The geometrical
optics derivation for the two-interfaces reflection coefficient (Eq. 4.15) does not apply to a
layer of thickness comparable to the wavelength of light.

After photochemical etching, described in section 3.3.1, the top-layer is removed, with-
out noticeably modifying the porous structure. In Fig. 4.5, the ART measurements of the
photochemically etched sample, along with the fit to the escape function theory with one
interface, are plotted. The fit in Fig. 4.5 yields a different effective refractive index than
the fit for the sample with top-layer, in Fig. 4.4. The effective refractive index of the pho-
tochemically sample is homogeneous, from the interface to the bulk. It can therefore be
concluded that the value fitted here,ne = 1.63, characterizes the bulk effective refractive
index. Such a refractive index, of a sample after removal of the top-layer, is used to fur-
ther interpret other optical measurements and to determine the wave vector of light in the
material, ask = nek0 = 2πne/λ0.

Performing further chemical etching (see section 3.3.2) on the previously photo-che-
mically etched sample increases the average diameter of the pores. In Fig. 4.6 are shown
the escape function measurements on the sample after 10 hours of chemical etching, and
the fit to the escape function theory with one interface. A good agreement between the
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Figure 4.6: Escape functionE(µe)/µe of a porous GaP sample after anodic, photochemical, and
chemical etching, for both polarizations (P circles, S squares). The fit to the escape function theory
gives an effective refractive indexne = 1.26. The increase in porosity via chemical etching induces,
as intuitively expected, a smaller refractive index.

escape function measurements and the theory forne = 1.26 is found. A lower value of the
effective refractive index was intuitively expected since increasing the diameter of the pores
increases porosity. Indeed, the porosity of the chemically-etched sample is estimated4 as
60%. The following section takes a more systematic approach to determine the effective
refractive index of samples in a range of different porosities.

The measurements presented in Figs. 4.4, 4.5 and 4.6 give confidence in the assumption
that a Fresnel reflection coefficient can be used at the interface of the strongly scattering
samples described here. A Fresnel coefficient follows from a flat interface between two di-
electric materials. The diameter of the pores in anodically etched samples gives an estima-
tion of the roughness of the interface of the porous region,i.e., in the range 40–200 nm. A
flat interface means that the roughness at the interface is much smaller than the wavelength
of the light. At 633 nm, this flatness condition is mildly fulfilled. The good agreement
between the ART measurements and the corresponding fits to the escape function theory
shows this condition to besufficientlyfulfilled.

4.4 Index of refraction versus porosity

The combination of tunable (strong) scattering properties of a porous material [81,84,170]
and the ART measurements allows a study of the refractive index as a function of porosity
in the strong scattering regime [93]. The structural (pore diameter, shape, inter-pore wall
thickness) as well as the scattering (mean free path) properties of porous GaP depend on

4Contrarily to the porosity of the sample after anodic etching, which can be determined thanks to the total
charge etched [151], the porosity after chemical etching can not be reliably determined. Weighting the sample
before and after chemical etching is a good, although inaccurate, way to obtain an estimation.
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Figure 4.7: Effective refractive index of porous GaP as a function of the porosity of strongly scat-
tering samples. A higher porosity implies a smaller proportion of the high-index material, GaP. For
comparison, the three effective medium theories are plotted, but fail to describe strongly scattering
porous GaP.

the exact conditions of the anodic etching step. As was described in section 3.2, mainly the
doping concentration of the GaP wafer and the etching potential influence the formation of
the porous structure. In the scope of this section, porous GaP samples from two different
wafers, etched in 0.5 mol/L sulfuric acid at various potentials, are considered. In order to
obtain the bulk refractive index of the material, only samples after photochemical etching
are used,i.e., after removal of the top-layer. A series of samples of porosity ranging from
13% to 62% was made. A lower porosity is phenomenologically obtained by decreasing
the etching potential. The lower limit to the porosity is set by practicality. At low etching
potential, the speed of etching is very small, and a sufficiently thick porous sample is very
time-consuming to produce. A higher porosity can be obtained by chemical etching for
example (see section 3.3.2). The porosity after chemical etching is not well known, and
corresponding measurements are therefore not presented. The porosity of each sample
is determined thanks to the total charge during etching [151]. The ART of each sample
is measured, and fitted to the escape function theory to obtain the bulk refractive index.
The effective refractive indices are plotted as a function of porosity in Fig. 4.7. Only
for a porosity of 0% or 100% is the effective refractive indexa priori known, since it
reaches the bulk value of the constituents, GaP and air (n = 3.3 andn = 1 respectively).
The measurements in Fig. 4.7 show a trend of decreasing refractive index for increasing
porosity, as intuitively expected. A useful comparison lies in the effective medium theories,
derived by Lorentz-Lorenz (LL) [161], Maxwell Garnett (MG) [162] and Bruggeman (BM)
[163]. The LL approach considers a mixture of spheres of two different materials embedded
in vacuum. The MG approach considers spheres of a material embedded in a matrix of
another material. The BM approach considers a mixture of spheres of different materials
embedded in the effective medium itself.
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wafer Vetch ϕ dpores dwall ` ne τe

doping (V) (%) (nm) (nm) (µm)

6 13± 4 44± 13 104± 21 0.97± .08 1.64± .05 3.13± .31
7 18± 3 43± 11 161± 96 0.84± .08 1.51± .05 2.47± .24

7× 1017 8 19± 3 47± 19 180± 82 0.91± .01 1.45± .05 2.20± .22
(cm−3) 9 22± 4 56± 11 199± 100 0.98± .10 1.43± .07 2.11± .30

9.5 28± 2 64± 14 140± 56 1.17± .12 1.48± .05 2.33± .25
10.5 33± 2 72± 21 126± 59 1.28± .12 1.40± .05 1.97± .22
11.2 62± 3 61± 90 50± 70 1.16± .10 1.35± .05 1.76± .20

6× 1017 13 21± 3 96± 28 152± 80 0.67± .08 1.33± .05 1.69± .20
(cm−3) 14 41± 4 93± 27 107± 46 0.83± .09 1.37± .08 1.86± .35

Table 4.1: Porosityϕ, pore diameterdpores, inter-pore wall thicknessdwall, transport mean free path
`, refractive indexne and extrapolation ratioτe of samples from wafers of two different doping con-
centration and etched at different potentialsVetch.

The three approaches (LL, MG and BM) can be summarized in one equation [171]:

εe − εh

εe + 2εh
= ϕ1

ε1 − εh

ε1 + 2εh
+ ϕ2

ε2 − εh

ε2 + 2εh
, (4.19)

whereϕi andεi are respectively the porosity and dielectric constant of materiali, εe ≡ n2
e

is the effective dielectric constant of the mixture, andεh is the dielectric constant of the
host material, dependent on the approach. In the LL case, the host material is vacuum. In
the MG case, the host is one of the two materials. In the BM case, the host is the effective
medium itself. The MG approach is asymmetric since it requires to choose one of the two
materials as the host. If one of the two materials is vacuum, the MG case with vacuum as
host and LL case are equal. In Fig. 4.7, the MG case with the GaP as host is plotted. To
this day, the comparison of experimental data to effective medium theories failed to show
any systematic agreement with any theory [3]. Granular metals or semiconductors, where
nanometer-sized grains are embedded in a continuous matrix, have been shown to follow
the MG predictions [172]. On the other hand, the conductivity of binary metallic mixtures,
where the two components are equivalent in the mixture, can better be described by the BM
approach [173].

Porous GaP can not be described by inclusions of one material (e.g., air) in the other
(e.g., GaP) since both materials are interconnected on a large scale. The GaP stays mono-
crystalline, and one pore extends from one pit at the surface up to the bottom of the porous
layer. The BM approach is thus expected to describe the effective refractive index of porous
GaP. From Fig. 4.7, it is obvious that no effective medium theory can account for the refrac-
tive index of strongly scattering porous GaP. In table 4.1, several structural and diffusion
parameters of the samples from Fig. 4.7 are shown. SEM images of the bulk of each sample
allows the measurement of the average and standard deviation values of the pore diameter
dpores and the inter-pore wall thicknessdwall. The pore diameter is the length scale of the
air regions, whereas the wall thickness is the length scale of the GaP regions. The transport
mean free path̀ is deduced from EBS measurements, taking into account the measured
extrapolation ratioτe. The length scale of the inhomogeneity in porous GaP ranges from
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40 nm to 200 nm. Porous GaP at 633 nm hardly fulfills the long wavelength limit of the
effective medium theories.

The effective medium theories calculate an effective refractive index from the phase
velocity in the composite material. The phase velocity is a field quantity,i.e., it is theoreti-
cally found by usingfieldGreen functions (see Eq. 2.23). The escape function theory used
here to determine the refractive index relies on the diffusion approximation. Diffusion is
a phenomenon which is characteristic ofintensity, as is obvious from section 2.4. It is yet
to be proven that the effective refractive index of a diffusive material, determined by the
escape function theory, is theonly refractive index. The fact that the escape function theory
shows very good agreement with ART measurements in porous GaP does not imply that the
measured effective refractive index is related to the phase velocity in the material [3]. The
refractive indices shown in this section are phenomenological, and onlydescribe, through
the escape function theory, the ART measurements. It is therefore a bold step to consider
that the calculation of the effective medium theories apply to the properties of a diffusive
medium. In this thesis, the effective refractive index, determined from ART measurements,
is only used to further interpretation of other diffusion experiments. Within the diffusion
regime the refractive index, or more importantly the extrapolation ratio, stays consistent
and unique.

4.5 Conclusions

The proper treatment of a diffusive medium of finite size must include boundary condi-
tions. The characteristic property of an interface, for diffusion, is the extrapolation ratio,
which depends solely on the internal reflectivity at the interface. The angular-resolved
intensity of light escaping a diffusive material was shown to depend on the extrapolation
ratio. Performing an escape function measurement allows the determination of the extrap-
olation ratio, and therefore the effective refractive index, of strongly scattering samples,
produced by electro- and photochemical etching of GaP. From the escape measurements of
a range of porous samples, the refractive index as a function of porosity was determined.
In the regime of strong scattering, the refractive index does not follow the usual effective-
medium theories.
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Chapter 5

Strong scattering in porous GaP

5.1 Introduction

Anderson localization of light is a phase transition induced by disorder [19]. In 1D and 2D
systems, light is always localized in a disordered material where the coherence length is
long enough [22, 23]. The coherence length is the extension of the disordered material in
which interference effects are present. The finite thickness and absorption of the material
are the two principal effects limiting the coherence in a disordered material. Localization
of light has been clearly observed in 1D and 2D systems [29,64,174–177].

In 3D systems, the localization transition is expected to happen fork`B ' 1, the so-
called Ioffe-Regel criterion [24], wherek is the wave vector of light, and
`B ≡ `sc/(1− 〈cosθ〉) the Boltzmann mean free path in the material. Although 3D Ander-
son localization has been extensively searched for, it remains elusive. Several claims for
3D Anderson localization for light in particular have been filed. The low diffusion constant
in samples of TiO2 scatterers, initially attributed to localization [72], was later found to be
due to resonant scattering [178]. A glass phase of aluminium and Teflon spheres was shown
to localize microwaves [27], although the strong absorption in this sample complicated the
analysis of the measurements. Localization of near-infrared light was reported [76], follow-
ing the analysis of the EBS cone and total transmission through gallium arsenide powders.
This semiconductor powder was suspected to display absorption [138, 179], which would
invalidate the claim of Anderson localization in reference [76]. The rounding of the EBS
cone at visible wavelength from porous GaP samples was interpreted [83] as the onset of
Anderson localization. Optical absorption was shown to be small enough [82] in porous
GaP to have no influence on the EBS measurements.

There is an ambiguity in the analysis of total transmission and EBS measurements,
since the same outcome of one of these measurements can be interpreted either in terms
of absorption or localization. The careful study of the fluctuations of the transmitted flux
through a multiple-scattering medium is expected [30] to discriminate between localization
and absorption. Such study of fluctuations is not done in the present thesis.

In chapter 3, the formation methods of porous GaP are described and explained. An-
odic etching (see section 3.2) allows a layer of strongly scattering porous material to be
made from a GaP wafer. Photochemical etching (see section 3.3.1) removes the bare GaP
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top-layer, remaining from the anodic etching, which simplifies the analysis of optical mea-
surements. Further chemical etching increases the size of the pores, to obtain stronger
scattering (see section 3.3.2).

The first study [82,83] of the scattering properties of porous GaP was done on two kinds
of samples: anodically etched (A-GaP) and ‘photo-anodically’ etched (PA-GaP). The orig-
inal GaP wafers used to produce the porous samples were doped with sulfur, with a doping
concentrationN = 2× 1017 cm−3, and a (100) surface orientation. GaP wafers of the same
characteristics are not available anymore. The A-GaP samples are produced according to
the same method as the samples presented in this thesis, at a constant potential of 15 V.
The PA-GaP samples are initially A-GaP samples, further photochemically etched, in a so-
lution of H2SO4 and H2O2, under the illumination of a helium neon (HeNe) laser (50 mW
at 633 nm). The photo-anodic method of references [82,83] has two simultaneous effects:
the increase of the pore size1 and the removal of the top-layer. The average pore diameter
of the porous structure was increased, after photo-anodic etching, from 90 nm in A-GaP to
130 nm in PA-GaP. The surface of the PA-GaP samples does not display the strong specular
reflection typical of the bare GaP top-layer anymore. The photo-anodic etching is equiv-
alent, although in a less controlled way, to the two further, photochemical and chemical,
etching steps described in sections 3.3.1 and 3.3.2. Provided the same original GaP wafers
of reference [82, 83] are available, samples equivalent to PA-GaP can be produced by fol-
lowing the etching steps described in chapter 3. A second, more systematic, study of the
scattering properties of porous GaP [81, 84] failed to reproduce samples which display an
Anderson localization effect. The present chapter is a continuation of this earlier systematic
study.

In this chapter, the scattering properties of the porous GaP samples, produced according
to the etching methods described in chapter 3, are studied. Samples from a wide range of
doping concentration, etching potentials, and etching solutions are studied. The effect on
the scattering properties of porous GaP of the two further, photochemical and chemical,
etching steps is presented. No deviation from classical diffusion has been observed in the
samples presented here. The most strongly scattering sample used in this thesis is made
from a GaP wafer of doping concentrationN = 5× 1017 cm−3, etched at 15.1 V in sulfuric
acid, wherek` ' 3.5 at a wavelength of 633 nm.

In the following section, the scattering properties of anodically-etched samples are pre-
sented, with a focus on the effect of the bare GaP top-layer, the optical absorption, and
the best scattering strength obtainable for samples of given doping concentration. The last
section presents results on further chemically-etched samples, to increase the scattering
strength of the porous structure.

5.2 Anodically etched samples

Porous GaP samples are made according to the anodic etching presented in section 3.2. The
EBS from the porous samples is measured using the off-centered rotation technique [129]
and a HeNe laser as light source, with a wavelength of 633 nm (See section 2.6 for the

1The incident beam at 633 nm is only absorbed via two-photon absorption in GaP. The holes generated by
absorption of the incident light are therefore homogeneously distributed in the whole porous structure. The
subsequent etching is therefore also homogeneous.
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5.2 Anodically etched samples

Figure 5.1: Backscattered intensity as a function of angle, normalized to the diffuse background
(in dashed curve) at 0◦. The porous sample has a doping concentrationN = 5 × 1017 cm−3, and
was anodically etched at 14 V. The EBS cones from a sample before (squares) and after (circles)
photochemical etching,i.e., with and without the top-layer, are shown. Removing the top-layer has a
large effect on the width of the EBS cone.

theory of the EBS). The same EBS setup is used in section 6.5.1. The samples are spun
along an axis normal to their surface, to perform the ensemble averaging, and average the
speckles out.

The EBS cone from a typical anodically-etched sample (N = 5 × 1017 cm−3, etched
at 14 V in sulfuric acid) is plotted as squares in Fig. 5.1. The dashed curve in Fig. 5.1 is
the Lambertian diffuse background (see Eq. 2.80). The EBS cone is fitted to the theory
from section 2.6 (see Eqs. 2.80 and 2.81). If the effect of the internal reflection is not
taken into account,i.e., for τe = 2/3, the width of EBS cone gives a wrong value of the
transport mean free path as`(τe=2/3) = (0.74± 0.06)µm. Measuring the escape function
(see chapter 4) allows the determination of the extrapolation ratio of the sample. Fitting the
same EBS measurement (squares in Fig. 5.1) by considering the experimentally-determined
extrapolation ratio gives̀(τe=2.5) = (0.43±0.04)µm. The knowledge of the extrapolation
ratio is very important to the determination of the transport mean free path.

5.2.1 Photochemically etched samples

The anodically-etched samples still have a highly-reflecting top-layer, which can be re-
moved by photochemical etching. In section 4.3.2, the top-layer is shown to strongly mod-
ify the angular distribution of light escaping the diffusive medium. The anodically-etched
porous samples are further photochemically etched (See section 3.3.1) in order to remove
the top-layer. In Fig. 5.1, the EBS cone from the same sample, before (squares) and af-
ter (circles) photochemical etching, is shown. The removal of the top-layer decreases the
internal reflection at the interface, and therefore increases the width of the EBS cone for
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Strong scattering in porous GaP

Figure 5.2: In (a), top of the EBS cone of a porous GaP sample (N = 5× 1017 cm−3, etched at 14 V),
of thicknessL = 248 µm. The fit (solid curve) gives the range of angles∆θR in which the EBS is
rounded. In (b),∆θR as a function of thickness for a range of samples as in (a). The solid curve is
the expectation for∆θR in the absence of absorption. The rounding of the EBS cone is only due to the
finite thickness of the sample.

the same transport mean free path. The extrapolation ratio of the photochemically-etched
sample is again determined by an escape function measurement. Fitting the EBS cone of
the sample after photochemical etching, knowing the extrapolation ratio, gives the value for
the transport mean free path`(τe=1.6) = (0.42± 0.02) µm. The transport mean free path
of the sample is not changed, within experimental accuracy, by the photochemical etching.
The photochemical etching removes the top-layer, but does not change the porous structure
itself. Note that the experimental accuracy on the determination of the mean free path by
EBS is increased when the top-layer is removed. In following samples, the top-layer is
removed before performing any optical measurements.

5.2.2 Absorption in porous GaP

Absorption is a very important parameter to control during the etching processes of GaP.
GaP has negligible absorption for light at 633 nm. In order to test the absorption of porous
GaP samples, the shape of the EBS cone at small angles is investigated. In Fig. 5.2a the top
of the EBS cone from the photochemically-etched sample (circles) in Fig. 5.1 is enlarged.
This sample has a thicknessL = 248 µm, determined from a SEM picture. The top of
the EBS cone is rounded, at a typical angle∆θR. In Fig. 5.2b, the rounding angle∆θR is
plotted for a range of samples identical to the one in Fig. 5.2a, but with varying thickness.
According to Eq. 2.84, the rounding of the EBS cone only due to finite thickness is inversely
proportional to the thickness. In the case ofLe ≡ L + 2τe` = 250µm the EBS rounding is
expected as∆θR = 0.4 mrad. Within the experimental accuracy, the rounding of the EBS
cone in Fig. 5.2a is only due to the finite size effect. The absorption length in this sample
is therefore bigger than its thickness,La > 250µm. Anodic and photochemical etching do
not introduce any measurable absorption, according to the rounding of the EBS cone.
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5.3 Increasing the pore size with chemical etching

Figure 5.3: In (a), EBS measurements from porous GaP samples of various doping concentrations,
etched atVmax in sulfuric acid. The solid curves are fits to the theory of section 2.6. In (b), lowestk`
parameter obtained for samples from wafers of different doping concentrations. The most strongly
scattering samples are made from wafers withN = 2–5× 1017 cm−3.

5.2.3 Doping concentration dependence

In order to look for the strongest scattering in porous GaP, samples made from wafers of
different doping concentrations, etched in different solutions and at different potentials,
were studied. As mentioned in section 3.2, using nitric acid or phosphoric acid instead of
sulfuric acid as the etching reagent does not produce a broader range of useable porous
structures [153]. For a given GaP wafer and etching solution, the porous samples are
more strongly scattering when etched atVmax. Etching at a higher potential leads to a
thicker depletion layer (see Eq. 3.2), to an increase of the average size of the pores toward
the wavelength of light (see Fig. 3.6) and therefore to a more efficient scattering of the
pores [81, 84]. The dependence of the scattering strength on the doping concentration of
the wafer is illustrated in Figs. 5.3a and 5.3b.

In Fig. 5.3a, the EBS measurements from porous GaP samples of different doping con-
centration, etched atVmax in sulfuric acid, are shown. At a constant extrapolation ratio, a
wider EBS cone implies a smaller transport mean free path in the material. The width of
the EBS cone varies strongly with doping concentration.

In Fig. 5.3b, a summary of the best achievable scattering strength from porous GaP
samples of different concentrations is plotted. The parameterk` = 2πne`/λ0 represents
the inverse of the scattering strength, where` is obtained from the EBS cone,ne from the
escape function andλ0 = 633nm. In previous studies [81, 82, 84], the highest scattering
strength was shown to be obtained from samples of doping concentration lower or equal
to 5× 1017 cm−3. The further decrease of the doping concentration does not, contrarily to
what was expected [81,84], allow the formation of a more strongly-scattering sample. The
k` curve in Fig. 5.3b has a minimum in the range 2–5×1017 cm−3. The lack of tunability of
the doping concentration of GaP wafers hampers the optimization of the scattering strength
of porous GaP samples.
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Strong scattering in porous GaP

5.3 Increasing the pore size with chemical etching

Both previous studies [81–83] of the scattering properties of porous GaP showed a decrease
of the transport mean free path with chemical etching. In the first study [82, 83], ‘photo-
anodic’ etching was used on a GaP wafer withN = 2 × 1017 cm−3 to produce PA-GaP,
wherek` ' 3. Photo-anodic etching increases homogeneously the diameter of the pores,
like chemical etching does (see section 3.3.2). In the second study [81], the strongest
scattering sample, withk` ' 3.5, was made by anodic etching at 16.6 V of a GaP wafer with
N = 5×1017 cm−3. After further chemical etching, this anodically-etched sample displayed
a smallerin situ total transmission (where the sample was still filled with water) but a
narrower EBS cone. Neither of these two samples can be exactly reproduced due to the
lack of equivalent GaP wafers. The doping concentration of wafers available, and studied
in this thesis, includeN = 5×1017 cm−3, quoted by the supplier. The potential of maximum
etching currentVmax is different for this available wafer than for the wafer of same, quoted,
doping concentration in reference [81]. The potential of highest etching currentVmax being
a characteristic of the wafer doping concentration and the etching solution, two wafers can
be discriminated with the help of the determination ofVmax.

5.3.1 Increasing the scattering strength

In order to test the increase in scattering strength of chemically-etched samples, the follow-
ing experiment was performed. A range of samples from a wafer of doping concentration
N = 5 × 1017 cm−3, anodically etched at 14.5 V in sulfuric acid, and with various thick-
nesses (30–280µm) is prepared. After photochemical etching, to remove the bare GaP
top-layer, the range of samples is characterized by escape function (see section 4.3), total
transmission (see section 2.5) and EBS (see section 2.5.1) measurements. The samples
are then chemically etched for' 4300s each. A second chemical etching step is made,
until almost the minimum inin situ transmission. After each of the two chemical-etching
steps, escape function, total transmission and EBS measurements are again performed on
the samples.

Fig. 5.4a shows a typicalin situ transmission curve (from the thinnest sample in the
range) as a function of chemical-etching time. The three symbols, square, circle, and
triangle, show the time during the chemical etching at which optical measurements are
performed on the dry sample. The three sets in the total transmission measurements in
Fig. 5.4b, and in the EBS measurements in Fig. 5.5 correspond to each chemical etching
step, with according symbol. The transmission in Fig. 5.4a decreases to almost a minimum,
at half the initial value. A qualitative explanation for such a decrease is that the transport
mean free path of the sample is also decreased by a factor 2. Thein situ transmission
depends on the transport mean free path of the infiltrated sample, and on the extrapola-
tion ratio at the interface between water and the infiltrated sample. A variation in thisin
situ transmission is therefore only a possible indication that the mean free path in the dry
sample is changed.

In Fig. 5.4b, the total transmission measurements of the samples versus the thickness
and the etching time are plotted. According to Eq. 2.62, the inverse total transmission is
linear in the thicknessLe ≡ L + 2τe` in the absence of absorption or localization. Either
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5.3 Increasing the pore size with chemical etching

Figure 5.4: Total transmission through a porous GaP sample (N = 5× 1017 cm−3, etched at 14.5 V)
as function of chemical-etching time. In (a), thein situ transmission during chemical etching is
shown, normalized to the value before etching (square). The chemical etching is stopped twice after
4300 s (at the circle and the triangle). A range of samples with different thicknesses is prepared in
the same way. In (b), the inverse of the total transmission, after drying the samples, is plotted against
the thickness, and the chemical etching time: before etching (squares), after one (circles) and two
(triangles) chemical-etching steps. The full curves are fits to the diffusion theory, without absorption
or localization.

absorption or localization induces an exponential decrease of the total transmission with
thickness. The three sets of measurements in Fig. 5.4b are fitted to Eq. 2.62, to obtain
the transport mean free path. The extrapolation ratioτe, necessary to analyze both total
transmission and EBS measurements, is determined by an escape function measurement.
The experimental values of the extrapolation ratio, the effective refractive index and the
transport mean free path determined by the total transmission are summarized in table 5.1.
As can be seen from the total transmission measurements (Fig. 5.4b and its summary in
table 5.1), the transport mean free path of the dry samples hardly reflect the change in
transmission of the infiltrated samples. The total transmission stays linear in thickness
even for very low transport mean free path, after chemical etching (wherek` ' 3.4).

chemical etching ne τe trans. ` from TT ` from EBS
time in liquid (µm) (µm)

before,t = 0 s 1.42± .05 2.05± .22 ≡ 1 0.40± .02 0.37± .03
middle,t = 4300s 1.31± .05 1.60± .20 0.69 0.30± .02 0.27± .02
end,t = 8600s 1.29± .05 1.52± .19 0.47 0.28± .02 0.26± .02

Table 5.1: Optical properties of a porous sample as a function of chemical-etching time. The effective
refractive indexne, and therefore the extrapolation ratioτe, are determined by an escape function
measurement. The transmission in liquid is thein situ transmission during chemical etching and is
taken from Fig. 5.4a. The transport mean free path` is determined both from the total transmission
measurements (TT, see Fig. 5.4b) and EBS (see Fig. 5.5a).
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Strong scattering in porous GaP

Figure 5.5: EBS measurements of porous GaP samples as a function of chemical etching: before
(squares), after one (circles) and two (triangles) etching steps (see Fig. 5.4). In (a), the EBS cones of
a single sample becomes wider with etching time, the transport mean free path decreases. In (b), the
rounding of the top of the EBS cone is plotted against the inverse of the thickness. Without absorption
or localization, the EBS cone rounding is proportional to the inverse of the thickness. Chemical
etching reduces the transport mean free path, without introducing any absorption or localization
effect.

In the first study of the scattering strength of porous GaP [82,83], the total transmission
of samples withk` ' 3 was also linear with thickness. At the same time, the rounding of the
EBS cone was shown to exceed the finite thickness effect, and to be only explainable by the
onset of Anderson localization. The subtle localization effect is tested, on the chemically-
etched samples presented here, with the sensitive EBS measurement.

The EBS measurements of the porous sample (from Fig. 5.4a) as function of chemical-
etching time are plotted in Fig. 5.5a. The EBS cone widens with chemical-etching time.
The EBS cones for the two chemically-etched samples lie almost on top of each other,
indicating a minute variation of the transport mean free path during the second chemical-
etching step. Each EBS cone is fitted to Eq. 2.81 in order to evaluate the mean free path.
The values of the mean free path determined by EBS are summarized in table 5.1. The
two determinations of the transport mean free path, by total transmission and EBS, agree
with each other, within experimental accuracy, in opposition to the discrepancy found in
reference [81] for comparable samples.

The top of the EBS cone of the chemically-etched samples is also investigated, and its
rounding is plotted as function of thickness in Fig. 5.5b. The EBS rounding in the case of
all the samples lies on the line∆θR = 1/(k0Le), characteristic of the finite thickness effect,
without absorption or localization. No effect of localization is seen in our samples close to
the Ioffe-Regel criterion,k`B ' 1.

The parameterk` in the chemically-etched samples presented in this thesis is compa-
rable to the one from samples in both previous studies [81,83]. In reference [83], the EBS
rounding of samples withk` ' 3 was attributed to the onset of localization. Our EBS mea-
surements on the very same samples from reference [83] reproduced the measurements of
reference [83]. In reference [81], a qualitative discrepancy between the transmission of the
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5.4 Conclusions

infiltrated samples and the width of the EBS cone was found. Neither deviation from the
diffusion expectations are found in the present study. Localization effects are expected to
appear whenk` approaches 1, which is the parameter which can be determined experimen-
tally. The real criterion for localization involves the Boltzmann mean free path`B, (or the
scattering mean free path̀sc modified to take anisotropic scattering into account, but not
interference) which is particularly difficult to determine in strongly scattering media. The
SEM images of samples from the previous studies [81–84] show a more isotropic porous
structure than for the samples presented here. Apart from the (small) difference ink` be-
tween our samples and those in reference [83], the absence of localization effect in our
samples may be due to a difference in Boltzmann mean free path.

5.4 Conclusions

Electrochemical etching of GaP produces a strongly-scattering porous structure. After elec-
trochemical etching, a highly-reflecting top-layer of bare GaP modifies the optical proper-
ties of the interface of the diffusive material. After removal of the top-layer, the transport
mean free path of the material is easily measured by EBS. Samples with very strong scat-
tering were produced by electrochemical etching, up tok` ' 3.5 for samples made from
wafers of doping concentrationN = 5×1017 cm−3. Chemical etching increases the average
pore size of porous samples. The scattering strength of porous samples can be increased by
chemical etching. The samples prepared according to the anodic, photochemical and chem-
ical processes present all the characteristics of diffusion without absorption or localization,
up to very strong scattering.
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Chapter 6

Anisotropic wave diffusion
in porous GaP

6.1 Introduction

Diffusion is a process based on the randomization of the direction of propagation of a par-
ticle or wave, on the scale of the transport mean free path`, inside a material of size much
bigger thaǹ . Intuitively, diffusion is therefore an isotropic phenomenon. In a material
with multiple scattering which is statistically invariant1 by any rotation, symmetry requires
isotropy. In a material which isnot statistically invariant by any rotation, the properties of
light scattering are expected to be dependent on direction, and in particular, the diffusion
can be anisotropic. In table 6.1 the differences between the symmetry of the scatterers
and the symmetry of the material, (and therefore the symmetry expected for diffusion), are
shown. The typical model system for an isotropic medium is a homogeneous distribution
of spherical scatterers (see upper-left corner of table 6.1), and usually point scatterers2. A
spherical scatterer has scattering properties which are independent of the direction of the
incident light, but can still depend on the angle between incident and scattered directions.
A Mie sphere is by definition a spherical scatterer, as is a point scatterer. Note that the point
scatterer has the additional property of isotropic scattering, meaning that after one scatter-
ing event, the scattered light is distributed isotropically. A good example of a homogeneous
distribution of spherical scatterers is a random aggregation (or glass phase) of silica or ti-
tanium dioxide spheres (such as found in toothpaste or white paint). A medium containing
isotropic scatterers can still be anisotropic, because of the material between scatterers. If
the correlation function of the position of a distribution of isotropic scatterers depends on
direction, then the material is anisotropic (see lower-left corner of table 6.1, where the
probability to find a scatterer just above or below another scatterer is much higher than

1A random material is not invariant by translation, or rotation, since this invariance requires the exact position
and shape of all the scatterers to be symmetrical. Considering the distribution of scatterers instead of the scatterers
themselves leads to statistical properties. For example, a material with an homogeneous distribution of isotropic
scatterers is statistically invariant by rotation and translation.

2Section 2.6, for example, makes explicit use of a homogeneous distribution of point scatterers to calculate the
EBS contribution.
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Anisotropic wave diffusion in porous GaP

scatterers

material
symmetry
⇒ diffusion
symmetry

isotropic anisotropic

isotropic

e.g., toothpaste, white
paint.

e.g., non-oriented liquid
crystals, sugar powder.

anisotropic

e.g., oriented inclusions in
an isotropic material. e.g., nematic liquid crys-

tals, porous GaP.

Table 6.1: Summary and examples of isotropic or anisotropic materials, depending on the micro-
scopic properties of the scatterers.

the probability to find one just on the left or right). Isotropic inclusions in a birefringent
material also produces an anisotropic material. A non-spherical scatterer (such as the ellip-
soids in the right column of table 6.1) has scattering properties depending on its orientation
compared to the direction of the incident light. If the distribution of orientations of non-
spherical scatterers is isotropic (i.e., all orientations are equiprobable) the material does
not have any macroscopic preferential direction (see upper-right corner of table 6.1). Most
liquids or colloids (like ‘liquid crystals’ above the liquid phase transition) which contain
non-spherical scatterers are still isotropic because of the randomization of the orientation
of individual scatterers. By aligning the non-spherical scatterers with a single macroscopic
direction, the material is made anisotropic (see lower-right corner of table 6.1). A transition
from isotropic to anisotropic can be found for example in nematic liquid crystals, aligned
with an external magnetic field [120]. The porous GaP samples formed by electrochemical
etching (see section 3.2) have a well defined preferential direction: pores grow in a direc-
tion parallel to the potential gradient and usually normal to the surface of the wafer. Other
systems in which diffusion is expected to be anisotropic include biological tissue, nematic
liquid crystals or photonic crystals of non-cubic symmetry [33].

The subject of an angular-dependent mean free path or diffusion constant is very seldom
considered. Interest in the propagation of light in nematic liquid crystals has provided the
first theoretical [180–185] and experimental [186–190] insights into anisotropic diffusion.
The first observations of anisotropic diffusion on a sample in the solid phase were done in
porous GaP [90,94]. Both scattering and anisotropy are much stronger in porous GaP than
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6.2 Generalizing diffusion to an anisotropic medium

Figure 6.1: Schematics in 2D of
the discrete anisotropic hopping
model. A particle at position
(i, j, k) can hop duringδt in the
directionα with a ratepα and a
step length̀ α. The third dimen-
sion, alongz, has to be seen or-
thogonal tox andy, with index
k.

(i,j,k) (i+1,j,k)

(i,j+1,k)

x
y

lx

px

py

ly

z

in nematic liquid crystals.
The characteristics of porous GaP, strong scattering [82,83] and strong anisotropy [90,

94] raise the possibility to achieve, or tune, Anderson localization thanks to anisotropy. It
is well known [23] that Anderson localization is always present in 1D and 2D systems. It
is believed [88, 89] that decreasing the dimensionality from 3D to 1D in a continuous way
(i.e., by increasing anisotropy) reduces the requirements to reach Anderson localization.
An anisotropic 3D system lies in this dimensionality description somewhere between 3D
and 2D and would therefore be a good candidate for (anisotropic) Anderson localization.

In the following section, a generalization of diffusion to an anisotropic medium is made.
In sections 6.3 and 6.4, stationary and dynamic diffusion experiments on porous GaP are
presented. In section 6.5 an anisotropicwavediffusion experiment on porous GaP is pre-
sented, namely the enhanced backscattering.

6.2 Generalizing diffusion to an anisotropic medium

Theoretical work on anisotropic diffusion has been done [180–185], but up till now mainly
focusses on the origin of the scattering in nematic liquid crystal: the fluctuations of the
nematic director. A microscopic derivation, similar to the derivation of the Boltzmann
equation of section 2.4, for an anisotropic medium has not yet been made. Without a
microscopic derivation leading to an anisotropic diffusion equation, a phenomenological
input for the anisotropic diffusion model is necessary.

6.2.1 Anisotropic hopping model

A possible realization of an underlying model describing 3D anisotropic diffusion is a 3D
hopping model. A particle sits on a 3D grid, at position(i, j, k), represented in Fig. 6.1.
During the timeδt the particle has a probability to hop on an adjacent point on the grid.
The rates at which the particle is hopping along thex, y andz axes are respectivelypx,
py and pz and the step sizes are respectively`x, `y and `z. The rates of hopping in a
certain direction do not depend on where the particle was coming from. In the case of an
isotropic hopping model (px = py = pz and`x = `y = `z) such angle-independent rates
are equivalent to isotropic scattering. The step size, in the isotropic case, can likewise be
seen as the (transport) mean free path of the particle in the medium. If the ratespα and step
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Anisotropic wave diffusion in porous GaP

sizes`α are anisotropic, both dynamic and stationary anisotropies are introduced. Such a
particle hopping on a grid performs a random walk. The concentration of a collection of
non-interacting particles hopping on a grid follows a diffusion equation. Indeed, the time
evolution of the concentrationCi, j,k(t) of particles at position(i, j, k) on the grid and at time
t obeys the relation

d
dt

Ci, j,k(t) = px

[
Ci+1, j,k(t) − 2Ci, j,k(t) +Ci−1, j,k(t)

]
+ py

[
Ci, j+1,k(t) − 2Ci, j,k(t) +Ci, j−1,k(t)

]
+ pz

[
Ci, j,k+1(t) − 2Ci, j,k(t) +Ci, j,k−1(t)

]
. (6.1)

The concentration at(i, j, k) can vary, for each axis, because of hopping out in either di-
rection, or hopping in from either direction. In a continuous-space description,Ci, j,k(t) →
C(i`x, j`y, k`z; t). In the limit3 `x,y,z → 0, the right-hand side of Eq. 6.1 is the sum of the
second derivatives with respect to each axis. Therefore[

∂

∂t
− D : ∇2

]
C(x, y, z; t) = 0, (6.2)

where

{
Dαα = pα`

2
α

Dα,β = 0.

Following a very simple continuous-space hopping model, an anisotropic diffusion equa-
tion is retrieved. The diffusion tensor defined here is anisotropic. Both stationary (`α)
and dynamic (pα) parameters of the model influence the diffusion tensor. From this hop-
ping model, the mean free path`α and the diffusion tensorD can be independently set as
isotropic or anisotropic. By setting the mean free path isotropic,`α = `, an anisotropic
diffusion tensor is obtained when the ratespα are not all equal.

6.2.2 Diffusion with anisotropic diffusion tensor

The anisotropic diffusion equation found in previous section, Eq. 6.2, is a very intuitive
generalization of the diffusion equation (Eq. 2.53) to anisotropic materials. The addition
of absorption into the hopping model is instantaneous, by specifying the rate1/τa at which
Ci, j,k(t) decays because of absorption.

The generalization of the diffusion equation to an anisotropic medium in the cartesian
basis of coordinatesxi is therefore[

∂

∂t
− Di j∇xi∇x j +

1
τa

]
Wrad
ω (r , t) = 0. (6.3)

In the basis of the hopping-model grid,Di j is diagonal4. Note that in the basis of coordi-
natesXi such that

xi ≡ Xi

√
Dii/Dzz, (6.4)

3The step sizes̀x,y,z do not need to vanish, but be much smaller than the typical length scale of diffusion. The
diffusion regime only sets in when the size of the sample is much bigger than the transport mean free path.

4For samples presented in this thesis, the diffusion tensorDi j is diagonal in the natural basis for a slab, as is
shown in section 6.3.
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6.2 Generalizing diffusion to an anisotropic medium

Figure 6.2: Cartoon of the slab geom-
etry for the anisotropic material. The
(x, y, z) basis is shown along with the cor-
responding axes of the uniaxial material.
The principal axis is‖ and the two other,
equivalent, axes are⊥.

vacuum vacuumdiffusive medium

z = 0 z = L
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x, //
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the diffusion equation is isotropic,[
∂

∂t
− Dzz∇

2
X +

1
τa

]
Wrad
ω (r , t) = 0, (6.5)

where the diffusion constantDzz has been chosen for consistency with the derivation for
the diffuse transmission (Eq. 6.8).

The identification of the basis where the diffusion equation for an anisotropic material
is isotropic allowsin principle the use of the isotropic results found in sections 2.5 and 2.6
together with the scaling of Eq. 6.4 to obtain the anisotropic diffusion results. This scal-
ing method is used in the present section to give predictions for the experiments shown in
sections 6.3 to 6.5. Nonetheless, the theoretical results considering only the anisotropic
diffusion tensor are not fully valid. The derivations in sections 2.5 and 2.6 show the impor-
tance of the boundary conditions and the source term in a diffusion problem. All stationary
diffusion results (see Eqs. 2.62 and 2.81 in particular) depend on the transport mean free
path ` and not on the diffusion constantD. Stationary measurements in the anisotropic
case are thereforeexpectedto depend on the anisotropic mean free path and not on an
anisotropic diffusion tensor. Unfortunately, no generalization of the transport mean free
path to an anisotropic medium is available at the moment. Or equivalently, the proper
derivation of anisotropic diffusion inboundedmedia has yet to be done.

6.2.3 Space-resolved transmission

The most easy and appealing experiment to show anisotropic diffusion of light is the space-
resolved transmission. In Fig. 6.2 the geometry of the statistically anisotropic material is
shown. A slab of material, finite in thez direction and infinite in thex andy directions,
is considered. The anisotropic material is taken as uniaxial and its principal axis5 serves
as definition of thex axis of the basis. All directions perpendicular to the principal axis
(e.g., y and z) are equivalent for the anisotropic material itself, but the finite thickness
distinguishes thez axis from they axis. An incident laser beam is focussed on the front
surface of the sample, atz= 0. The source for diffuse light is taken as a Dirac delta source
S0δ(x)δ(y)δ(z− `)δ(t). This approximation of the source as a product of delta functions
is valid if the time and space characteristics of the incident pulse are much smaller than
the corresponding diffusion characteristics (more particularly the diffuse timeL2/D and

5The denomination‖ will also be used for the principal axis. In porous GaP samples, the‖ direction is parallel
to the direction of growth of the pores. The two, equivalent, directions perpendicular to‖ are called⊥.
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Anisotropic wave diffusion in porous GaP

the thicknessL, respectively). In the scaled basisXi , the solution to the diffusion equation
is proportional to the time-dependent diffusion Green function found in Eq. 2.55. In the
dynamic case, the Dirichlet boundary conditions (in Eq. 4.10) have to be taken. In order
for the diffuse intensity to vanish at a distanceze outside the interface, the source term is
anti-symmetrized atz = −ze, and atz = L + ze. This double mirroring gives rise to an
infinite sum of exponential terms

Wrad(r , t) =
S0Dzz

(4πt)3/2
√

DxxDyyDzz

exp

(
−

x2

4Dxxt
−

y2

4Dyyt

)
exp

(
−

t
τa

)
Θ(t)

×

∞∑
m=−∞

[
exp

(
−

[z− A(m)]2

4Dzzt

)
− exp

(
−

[z− B(m)]2

4Dzzt

)]
, (6.6)

where

{
A(m) ≡ 2m(L + 2ze) + `
B(m) ≡ 2m(L + 2ze) − 2ze − `.

(6.7)

The space-resolved diffuse transmission is the flux of diffuse energy at the back interface
[189,191]

Td(x, y, t) ≡ −Dzz
∂Wrad(r , t)

∂z

∣∣∣∣∣∣
z=L

Td(x, y, t) =
S0Dzz

16π3/2
√

DxxDyyDzzt5
exp

(
−

x2

4Dxxt
−

y2

4Dyyt

)
exp

(
−

t
τa

)
Θ(t)

×

∞∑
m=−∞

[
A′(m) exp

(
−

A′(m)2

4Dzzt

)
− B′(m) exp

(
−

B′(m)2

4Dzzt

)]
, (6.8)

where

{
A′(m) ≡ (2m+ 1)(L + 2ze) − ` − 2ze

B′(m) ≡ (2m+ 1)(L + 2ze) + `.
(6.9)

Eq. 6.8 depends on time, and on the displacementx andy from the origin. Atx = y = 0,
i.e., at the position on the back surface just opposite to the point source, the time evolution
of the transmitted light only depends onDzz. The time evolution of light transmitted at
y = 0 (resp.x = 0) depends only on the two componentsDzz andDxx (resp.Dyy). A useful
tool to analyze a time-resolved transmission curve is to look at the diffuse traversal time
tdiff ,

tdiff(x, y) ≡

∫
tTd(x, y, t)dt∫
Td(x, y, t)dt

. (6.10)

Qualitatively,tdiff can be derived in an anisotropic material without absorption as fol-
lows. The time to diffuse through a material of thicknessL and diffusion constantD scales
with L2/D. In order to cross the slab at an angleθ from the normal to the interface, light
has to travel a distanceL(θ) = L/ cosθ. Along this directionû(θ), light diffuses with a
diffusion constantD(θ) ≡ ûiDi j û j . The traversal time across the slab at an angleθ in the
(xz) plane scales with

tdiff ∝
L2(θ)
D(θ)

=
L2

Dzz

[
1+ (x/L)2

]2

1+ (x/L)2(Dxx/Dzz)
, (6.11)
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6.2 Generalizing diffusion to an anisotropic medium

Figure 6.3: Cross-sections alongx (dashed curve) andy (full curve) of the spatial distribution of
the stationary diffuse transmission. The parameters are chosen from the experiment in sections 6.3
through 6.5, in particular

√
Dxx/Dyy = 4. The cross-section alongx with the axis scaled by a factor

1/
√

4 is indistinguishable from the cross-section alongy.

wherex = L tanθ is the displacement on the back interface due to crossing the slab at an
angleθ. The same equation (Eq. 6.11) holds for the traversal time for a displacementy if
the angleθ is in the (yz) plane, and forDxx → Dyy. The role of absorption is to reduce
the diffuse transmission after the absorption time. The traversal time is therefore slightly
decreased when absorption is present.

From the exact solution (Eqs. 6.8 and 6.10) and the qualitative derivation (Eq. 6.11), the
diffuse transversal time is found to be roughly proportional to the square of the displace-
ment from the origin. Obviously, whatever the values of the components of the diffusion
tensor, light will be transmitted more quickly forx = y = 0 since there is no additional
transport along thex andy axes.

By integrating Eq. 6.8 over time, a stationary solution to the space-resolved transmis-
sion is found. The spatial profile of the diffuse transmission is plotted in Fig. 6.3, with
typical parameters (Dxx = 4Dyy, `, τa) from the experiments in following sections. Scaling
the x axis by a factor1/

√
4 makes the cross-sections alongx andy indistinguishable. The

ratio of the widths of the two distributions, alongx andy, is found to be

∆xstat

∆ystat
=

√
Dxx

Dyy
, (6.12)

as was expected from the scaling of the anisotropic diffusion equation (Eq. 6.4).

6.2.4 Enhanced backscattering

The generalization of EBS to anisotropic diffusion follows the same easy steps as in the
previous subsection, but also keeps the same pitfalls. In section 2.6, the EBS cone is derived
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y

x

Dxx/Dyy = 4

Figure 6.4: Isocontours of an anisotropic EBS cone,
for k0` = 10, Dzz = Dyy = Dxx/4, τe = 2/3. The
distance to the center isθ. The closer the curve is to
the center, the higher the backscattered intensity is.
The ratio of EBS widths alongx andy axis is equal to
the square root of the ratio of thexxandyydiffusion
tensor components.

in the case of isotropic diffusion. From the bistatic coefficients in Eqs. 2.80 and 2.81 it is
obvious that the most important parameter in the EBS is the transport mean free path of
the material. Nonetheless, a material in which the diffusion constant is anisotropic (i.e., the
diffusion tensor is not proportional to the identity tensor) and the transport mean free path
isotropic is considered for the present derivation as the best model up to now.

The derivation of the EBS in section 2.6 stays the same for anisotropic diffusion up till
Eqs. 2.73, 2.74 and 2.75, the bistatic coefficients for, respectively, the single scattering, the
ladder contribution, and the most-crossed-diagrams contribution. The bistatic coefficients
are still to be integrated over the stationary Green function. In the case of anisotropic
diffusion, the dynamic Green function for isotropic diffusion, from Eq. 2.55, in the scaled
basis (see Eq. 6.4) is considered. The diffusion Green function is Fourier transformed along
thex andy components as

Gd(z,q⊥, t) =

√
Dzz

4πt
exp

(
−

z2

4Dzzt

)
exp(−q2

xDxxt) exp(−q2
yDyyt)Θ(t). (6.13)

Integration over time of the dynamic Green function provides the stationary solution

Gd(z, q̃⊥) =
exp(−zq̃⊥)

2q̃⊥
, (6.14)

whereq̃2
⊥ ≡

Dxx

Dzz
q̃2

x +
Dyy

Dzz
q̃2

y. (6.15)

This stationary anisotropic Green function is recognized as the stationary Green func-
tion (Eq. 2.56) apart from the renormalized transverse Fourier vectorq̃⊥. The Green func-
tion for the semi-infinite medium is derived from the infinite case by using the mirror
method (see Eq. 2.78), where internal reflection is taken into account. Note that the mirror
method is dependent on the mean free path, and its use therefore requires an isotropic mean
free path, assumed also in this section. The integrals in the bistatic coefficients (Eqs. 2.74
and 2.75) can now be performed with the anisotropic stationary Green function in Eq. 6.14.
Apart from the renormalized Fourier vectorq̃⊥, the integrals of the bistatic coefficients are
performed in the exact same manner than in the isotropic case.
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6.2 Generalizing diffusion to an anisotropic medium

Figure 6.5: Cross-sections of the EBS from an anisotropic material,k0` = 10, Dzz = Dyy = Dxx/4,
τe = 2/3. The cross-section in thex direction (full curve) depends onDxx whereas the cross-section
in the y direction (dashed curve) depends onDyy. The EBS lineshape of an isotropic sample with
k0` = 20andτ = 2/3 is here indistinguishable from thex cross-section of the anisotropic EBS cone.

The anisotropic EBS is found as

γ`(µi , µs) = 3µs

(
τe +

µsµi

µs + µi

)
(6.16)

γc(µi , µs, α̃) =
3

2µiv
1

(α̃ + v)2 + u2

(
1+

2vτe

1+ τeα̃

)
, (6.17)

whereu ≡ k0`(µi − µs), v ≡
1
2

(
1
µs
+

1
µi

)
, α̃ ≡ q̃⊥`. (6.18)

The equations describing the anisotropic EBS exactly map on the results in the isotropic
case (Eqs. 2.80 and 2.81). The renormalizationα → α̃ makes the EBS cone anisotropic.
The contours of an anisotropic EBS cone are plotted in Fig. 6.4. The parameterα̃ now
depends on the angle between the(k in, kout) plane and the material axes. Ifk in, kout and the
direction x (resp.y) are coplanar, the EBS lineshape depends on the (isotropic) transport
mean free path, and on the ratio of diffusion tensor componentsDxx/Dzz (resp.Dyy/Dzz). If
diffusion is faster for example in the tangential (x) than in the depth direction (Dxx > Dzz)
the width of the EBS cone is reduced by a factor

√
Dxx/Dzz. The shape of the isotropic EBS

cone, from Eqs. 2.80 and 2.81, stays the same in the anisotropic case, for each orientation of
the detection plane separately. In other words, it is possible to describe each cross-section
of an anisotropic cone with the isotropic EBS model, which leads to aphenomenological
transport mean free path depending on the orientation of the detection plane. The cross-
section in the(xz) plane, shown in Fig. 6.5, of the anisotropic EBS cone from Fig. 6.4, is
described by a transport mean free path` and a diffusion tensor such thatDxx = 4Dzz, but
is also very well approximated by an isotropic diffusion constant and a renormalized mean
free path

√
4`. This phenomenological renormalization of the mean free path to account
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for the diffusion tensor is not exact. Renormalizing the mean free path` in Eqs. 6.16, 6.17
and 6.18 leads to modify the definition ofu. The difference between the strict definition
of u and the renormalization appears mainly in the wings of the EBS cone, and as a very
minute correction (see Fig. 6.5).

It has been suggested [190] that an anisotropic material can be described by an angular-
dependent transport mean free path, such that6 `(φ) = `⊥ sin2 φ + `‖ cos2 φ, whereφ is the
angle between the principal axis (‖) of the material and the detection plane(k in, kout). By
assuming that the random walk in the three orthogonal directions (x, y andz) is uncoupled,
the isotropic EBS result can be applied independently to each direction, with a different
mean free path. The description of an anisotropic mean free path is intuitively appealing.
Nevertheless, there exists no theory describing anisotropic boundary conditions, necessary
to use an anisotropic mean free path. The difference between the anisotropic diffusion
result and the renormalized mean free path (see Fig. 6.5) is very small. Therefore, it is not
possible to discriminate between the theory developed in this section and the model of an
anisotropic mean free path from reference [190].

The theory of an anisotropic diffusion constant is equivalent to the theory successfully
applied to photonic crystals with disorder [44,192,193]. A real photonic crystal always has
some disorder [194], leading to a transport mean free path typically of the order of 20µm
[44, 194]. The Bragg attenuation length in photonic crystals, depending on the ordering
of the structure, reduces the depth in which light within the stop gap can propagate. The
difference between the Bragg attenuation length, observed in the depth direction, and the
mean free path makes the material effectively anisotropic. The theories presented in these
studies [44,192,193] of disordered photonic crystals deal with an anisotropic characteristic
length (mean free path and Bragg attenuation length) but also fail to address rigourously
the corresponding anisotropic boundary conditions. Therefore the theories of references
[44, 192, 193] can only be seen as (good) approximations of the EBS in a material with a
mean free path and a Bragg attenuation length.

6.3 Stationary anisotropic diffusion

The anisotropic material used in this chapter [90, 94] is formed by anodic etching of a
wafer of GaP. The etching direction is made parallel to the surface of the GaP wafer. The
thickness of the wafer is 310µm. The etching process goes on sufficiently long so that
possible edge effects are negligible. The samples are then 2 mm long, much bigger than
all other typical length scales. The anisotropic samples are therefore in a slab geometry,
bounded in thezdirection. The principal axis (i.e., the direction of etching of the pores) of
the material defines thex axis (see Fig. 6.2). The distribution of pores in the whole bulk of
the sample is found to be homogeneous [90].

The samples in the anisotropic geometry are made by applying a potential of 10.5 V
on one edge of the wafer, and letting the opposite edge be in contact with an, electrically
grounded, sulfuric acid solution of concentration 0.5 mol/L. The remaining four sides are
covered by a layer of silicon nitride (SiN) of thickness 200 nm, to prevent unwanted side

6Reference [190] quotes̀(φ) = `⊥ sinφ+ `‖ cosφ, which does not reduce to an isotropic mean free path in the
isotropic case, and is therefore probably a typo.
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6.3 Stationary anisotropic diffusion

Etch direction

Figure 6.6: SEM images of the anisotropic structure of porous GaP. The left image shows a transver-
sal, and the right image a longitudinal, cross-section of the pores. The material is clearly uniaxial.
Scale bars = 1µm.

source

sample

CCD

L1 L2

Figure 6.7: Cartoon of the diffuse transmission imaging setup. A HeNe laser beam is focussed
through a lens L1 on the front side of the sample. The back side is imaged, trough a lens L2, on a
CCD camera. If the sample is not invariant by rotation around the axis of the laser beam, the image
on the CCD is anisotropic.

etching. The obtained samples display a porosity of 46% and the diameter of the pores is
(70± 30) nm. Two scanning electron microscopy (SEM) images, transversal and longi-
tudinal to the pores, of a typical sample are shown in Fig. 6.6. The random distribution
of the pores, their diameter close to the wavelength of light and the high refractive index
contrast insure that light is strongly scattered. Furthermore, the elongation of the pores,
being several times their diameter, induces the anisotropy for light scattering and diffusion.

6.3.1 Space-resolved transmission

The most straightforward measurement to show anisotropic diffusion in a slab is letting the
light from a pointlike source on one side of the slab diffuse to the other side, spreading
unevenly in different directions. The principle of such transmission measurements is de-
scribed in references [90,186,188], and sketched in Fig. 6.7. A HeNe laser beam (633 nm)
is focussed on the front side of the sample, with a focus width of 10µm. The back side
of the sample is imaged on a charge-coupled device (CCD) camera. Light propagating
through the sample gets diffuse after one transport mean free path, losing memory of its
initial polarization along with its initial direction. In transmission through thick turbid
material, the incident polarization therefore plays no role.

The image on the CCD camera from an anisotropic sample is shown in Fig. 6.8. The
scattered light from a continuous-wave laser through a stationary sample displays a speckle
pattern, visible in Fig. 6.8a. This spatial speckle is described as short-range intensity corre-
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Figure 6.8: Light intensity on the back side of an anisotropic sample, as measured with the CCD
camera. Darkest regions have the highest light intensity. (a) Without speckle averaging. (b) With
speckle averaging. The diffusion is strongly anisotropic.

lations, calledC1 in the literature [12,195]. The short-range correlation of speckle intensity
between two points separated by a distance∆r is [12,196]

C1(∆r) =
sin2(k∆r)

(k∆r)2
exp

(
−
∆r
`

)
, (6.19)

wherek is the wave vector of the light inside the material, therefore depending on the ef-
fective refractive indexn. The intensity correlationC1 depends mainly on the wave vector
k, and lightly on the mean free path` whenk` � 1. For all but the most strongly scattering
samples,C1 only depends on the wavelength of light and the effective refractive index of
the material. A study [197] of the near-field spatial speckle pattern of a micro-porous silica
glass demonstrated the possibility to determine the effective refractive index of the mater-
ial. In a material with a broken rotation symmetry, the speckles can be expected to become
anisotropic7. A näıve generalization of the correlation functionC1 to an anisotropic mater-
ial suggests the correlation along a certain direction depends on the mean free path and re-
fractive index along this direction. An anisotropic material can display angular-dependence
for both mean free path and refractive index (i.e., birefringence). In the present anisotropic
samples, diffusion is anisotropic and birefringence can be expected8. No anisotropy in the
spatial intensity correlation function of the porous GaP samples was observed. An optical
microscope is barely able to fully resolve the spatial speckle pattern. A near-field probe,
such as used in reference [197], has an uncontrolled anisotropy in the geometry of the tip
itself, making the analysis of an anisotropic correlation function very difficult.

By averaging over speckle,i.e., averaging over different speckle patterns formed by
different positions but the same orientation of the sample, a smooth diffuse pattern is re-
covered, as seen in Fig. 6.8b. The diffuse transmission through the anisotropic sample is
clearly anisotropic. Light diffuses farther in the‖ direction than in the⊥ direction. In
the limit of infinitely long and rectilinear pores,i.e., the 2D limit, a wave could propagate
along the pores, but be diffuse in the plane orthogonal to the pores. Intuitively, light should
propagate more easily along the pores (in the‖ direction) than against (⊥). The intensity
distribution in Fig. 6.8b is symmetrical around the axesx andy. The assumption in sec-
tion 6.2, that the diffusion tensor of our anisotropic samples is diagonal in the natural basis
for the slab and the orientation of the pores, is justified.

7Although no such theory has been developed yet.
8Several experiments suggest birefringence in micro-porous GaP [71] and silicium [198].
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6.3 Stationary anisotropic diffusion

Figure 6.9: Normalized diffuse transmission as a function of displacement at the back side of an
anisotropic sample, along the two principal directions,‖ (or x) in full curve,⊥ (or y) in dashed curve.
The two curves are fitted to the theory of section 6.2.3. The ratio of widths is∆xstat/∆ystat= 2.1± 0.2.

Two cross-sections of the image on the CCD (of Fig. 6.8b) are taken, going through
the center of the spot, in the‖ and⊥ directions respectively, as shown in Fig. 6.9. Both
cross-sections of the anisotropic transmission spot are fitted to the theory of section 6.2.3.
Equivalently thex axis can be scaled so that both cross-sections in Fig. 6.9 lie on top of
each other. The anisotropy of the transmission spot is∆xstat/∆ystat = 2.1± 0.2. This ratio
of widths should be interpreted, according to the theory of section 6.2.3, as the square root
of the ratio of diffusion tensor componentsxx andyy, thusDxx/Dyy = 4.4± 0.8.

The diffusion of light in porous GaP is much more anisotropic than reported in ne-
matic liquid crystals [186,188] (where the anisotropy in diffusion constant is found around
1.3–1.6). Porous GaP is a strongly anisotropic and strongly scattering material.

6.3.2 Angular-resolved transmission

Previous studies of anisotropic diffusion (in particular in the interpretation of the anisotropic
EBS cone from nematic liquid crystals [190]) dismissed the problem of the interface prop-
erties as non-significant. Section 2.6 shows how important the knowledge of the interface
properties is in the analysis of stationary diffusion measurements. In chapter 4, the interface
properties of a diffusive material are found from the angular-resolved transmission (ART),
or escape function. There is still no theory of diffusion with anisotropic mean free path.
The escape function (see section 4.2.2) in the case of an anisotropic material is also not
theoretically known. The ART of the anisotropic material must therefore be determined in
order to fully analyze the EBS measurements in section 6.5.1. The ART of the anisotropic
material is determined in the same manner9 as described in section 4.3. Of course, the

9Even in the case of an anisotropic material, the polarization of the incident beam has no effect on the diffuse
transmission.
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Figure 6.10: Escape function of an anisotropic sample in two orientations, etching direction in
(circles) and out (squares) of scanning plane and for two polarizations, P (open symbols) and S
(closed symbols). The two full curves are the two polarizations of the closest fit to the theory, with n
= 2.45. The experimental data is independent of direction: the reflectivity properties are isotropic in
this sample, but they do not fit with the isotropic theory.

anisotropic material can not be spun around the axis of the incident beam, since it would
destroy the potential orientation dependence of the ART. Without spinning the sample, the
speckle averaging is much less efficient. The escape function measurements on anisotropic
material are shown in Fig. 6.10. The sample can be oriented with the direction of the pores
in the plane of detection (‖, circles), or normal to it (⊥, squares). Several measurements
for each orientation and polarization (P and S) are performed, changing the position of the
sample each time in order to average over disorder. No difference in angular dependence
between the two sets,‖ and⊥, is found within the experimental uncertainty. The isotropy
of the escape function ensures that the interface properties, extrapolation length [128] and
reflectivity coefficientR̄, are equal in the‖ and⊥ directions. We estimate the uncertainty
in the extrapolation length as 5%. The extrapolation length can not depend on the plane of
detection since it is a length in thez, or depth, direction. The internal reflection coefficient
R̄ is derived from the Fresnel coefficients. In a birefringent material for example, such as a
nematic liquid crystal, the reflection coefficient can be anisotropic. The EBS width, from
Eq. 2.83, depends on the transport mean free path and the extrapolation length. The extrap-
olation length being independent of the plane of detection, the ratio of widths of the EBS
in the‖ and⊥ planes are independent of the extrapolation length.

ART measurements are compared to the escape function theory in section 4.2.2. Both
polarizations of the best fit to the escape function theory, with a refractive index of 2.45,
are plotted as full curves in Fig. 6.10. Unfortunately, no satisfying quantitative agreement
can be found between the measurements of the anisotropic material and the theory within
experimental accuracy. The discrepancy can be interpreted as being due to the presence of
two extra layers on top of the porous structure. Indeed, the pores can not touch the surface
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Figure 6.11: Cartoon of the space- and time-resolved diffuse transmission setup. A pulsed source is
focussed on the front side of the sample. One point of the back side of the sample is imaged through
a lens L2, an aperture Ap, and a telescopeT1 and T2, on a fast-response PMT. Moving L2 allows
different positions on the back side of the sample to be imaged in time.

of the wafer, which leads to a typically 200 nm thin layer of bare GaP between the pores
and the surface of the wafer. Such a layer is shown in section 4.3.2 to significantly change
the ART. The second layer is the remaining SiN layer used to protect the surfaces against
etching, which can not be removed without damage to the samples. It is also possible,
although unlikely, that an anisotropic mean free path would induce for the escape function
a different shape than in the isotropic case, but still independent of the detection plane.

The lack of consistent fit of the ART measurements with the escape function theory
prevents the determination of the exact value of the extrapolation length of the anisotropic
material.

6.4 Dynamic anisotropic diffusion

The space-resolved transmission from section 6.3 can also be performed in a time-resolved
way. The setup used to record the time-resolved transmission is sketched in Fig. 6.11.
A solid-state pulsed laser (634 nm), of average power 0.5 mW, of pulse duration 100 ps
and repetition rate 20 MHz was used as the source. The laser beam was focussed on
the front side of the sample to a 10µm spot. The focus of the laser beam defines the
origin of thex andy axes. The back side of the sample was imaged through a lens on an
aperture. Displacing the imaging lens in a plane parallel to the surface of the sample allows
different successive points of the sample to be imaged on the aperture. The aperture was
imaged through a telescope and a monochromator on a photomultiplier tube (PMT). The
PMT signal was resolved in time by a time-to-amplitude converter. The origin of time is
taken as the arrival time of the incident pulse in the absence of sample. The space- and
time-resolved transmission through the anisotropic material is plotted in Fig. 6.12. Three
different displacements across the sample along they axis are shown. Each of the three
measurements in Fig. 6.12 shows a peak followed by an exponential decay, characteristic
of diffusion (see Eq. 2.66). In the case of the measurements with the displacement along
they direction, all decay times are found to be equal. In the uniaxial porous GaP presented
here, theyy andzz components of the diffusion tensor are equivalent, since both are in
the direction⊥. The measurements of Fig. 6.12 are fitted to the theory of Eq. 6.8, in
order to yield theyy andzzcomponents of the diffusion tensor, as well as the absorption
time τa. A more intuitive way to obtain the diffusion parameters is to consider the diffuse
traversal timetdiff , from Eq. 6.10. The traversal time increases roughly with the square of
the displacement from the origin, as is seen in the inset of Fig. 6.8. The traversal time
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Figure 6.12: Normalized time-resolved transmission through an anisotropic material, for various
displacements in they direction: y = (0 ± 10) µm (circles),y = (120 ± 10) µm (triangles) andy =
(240± 10) µm (squares). The solid curves are fits to the anisotropic diffusion theory (Eq. 6.8). The
solid curve aroundt = 0 is the incident pulse. The inset presents the same transmission data in a
linear plot. The excellent agreement between the measurements and the theory shows the anisotropic
diffusion for light. Courtesy of Patrick Johnson.

for each measurement is plotted in Fig. 6.13, with displacement in they (triangles) orx
(circles) directions. Light traverses the slab earlier through the shortest distance,i.e., for
x = y = 0, where light transport only depends on thezzcomponent of the diffusion tensor.
The increase in traversal time depends on the diffusion speed along the two transversal
directions and is smaller when the diffusion is faster. From the transmission measurement
without x or y displacement, theDzz andτa values can be determined asDzz = (14.2 ±
0.1) m2/s andτa = (0.59±0.02)ns. In a timeτ, the average distance the light can propagate
with a diffusion constantD is

√
Dτ. The smallest absorption lengthLa corresponding to

the measured absorption timeτa is La =
√

Dzzτa = (91±2) µm. The absorption lengthLa is
here significant since smaller than the thickness of the anisotropic sample (L = 310µm). In
other porous GaP samples the absorption length has been shown [81,84] to exceed200µm,
and in section 5.2.2 to exceed250µm. The samples made in the anisotropic geometry are
of good quality although less well controlled than the samples made in the normal geometry
(and used in chapters 3, 4 and 5)

The transmission measurements with a displacement in thex (resp.y) direction also
depends onDxx (resp.Dyy) and can be fitted by takingDzz andτa fixed, which yieldsDyy =

(14± 2) m2/s andDxx = (58± 5) m2/s. The fits for they direction are plotted in Fig. 6.12.
The ratio of the components of the diffusion constant is found to beDxx/Dyy = 4.1± 0.4,
in agreement with the value found in the stationary transmission measurement.
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Figure 6.13: Diffuse traver-
sal time tdiff as a function
of the absolute value of the
displacement from the ori-
gin in the x (circles) andy
(triangles) directions. The
full curves are fits to the
anisotropic diffusion theory.
The dashed curves are plots
of the theory with±10% vari-
ation in the diffusion tensor
components. Light is trans-
mitted earlier in the x di-
rection than in they direc-
tion, the diffusion is therefore
faster alongx than alongy.
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6.5 Anisotropic wave diffusion

6.5.1 Anisotropic enhanced backscattering

EBS measurements were performed using the off-centered rotation technique [129] and
a HeNe (633 nm) laser as light source. This setup allows to horizontally scan the angle
from the exact backscattering direction, with a 900 mrad range and an 0.5 mrad resolution
with an illumination area of 2 mm in diameter. The measured sample can be oriented with
etching direction either vertical or horizontal, so that the etching direction is either normal
or parallel to the detection plane. In order to average over disorder, a nutation is applied to
the sample. The range of the nutation is less than 150 mrad. Further averaging was done
by performing measurements at four different positions of the samples.

It is possible to measure EBS with various polarizations. Relevant are linear polariza-
tion, with parallel or orthogonal analyzer, and circular, with helicity preserving or non-
preserving detection. Using linear polarization, although experimentally easier to perform,
is the least preferable solution in combination with an anisotropic material. Indeed, in
addition to parallel and cross analyzers, the incident linear polarization can be oriented
either parallel or orthogonal to the pores. Furthermore, it has already been noticed [199]
that an incident linear polarization in or normal to the scanning plane also introduced an
anisotropy in the backscatter cone, due to a trivial polarization effect and not anisotropic
diffusion. The authors of reference [199] measured the EBS from concentrated suspen-
sions of polystyrene spheres in the linear (and parallel) polarization channel. The direction
of the incident polarization was shown to break the rotational symmetry of the setup and to
imply a distinction between two different detection planes, parallel and normal to the inci-
dent polarization. The measured backscatter cone displayed different widths along the two
planes of detection, parallel and normal to the incident linear polarization. The anisotropy
in reference [199] is due to the vector nature of light.

In order to avoid this polarization anisotropy of the backscatter cone, the circular po-
larization channels can be used. In addition, the helicity preserving channel filters out the
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Anisotropic wave diffusion in porous GaP

Figure 6.14: Backscattered intensity as a function of angle, normalized to 1 at high angles, of an
anisotropic sample in two orientations: etching direction in (‖, circles) and out (⊥, squares) of scan-
ning plane, and two polarizations, helicity preserving (open symbols) and non-preserving (closed
symbols). The curves are independent fits to the isotropic EBS theory. The anisotropy is clearly seen
in the preserving channel, which implies anisotropic wave diffusion.

single-scattering contribution. This filtering of the single scattering effectively reduces the
background of the EBS cone, and ultimately allows to reach the theoretical enhancement
factor of 2 [131]. In the present study, the enhancement factor does not reach 2. Paths
for light which leave the sample outside the illuminated area but still fall on the detector
reduces the EBS enhancement. In the helicity non-preserving channel, only the low orders
of scattering remain and contribute to a (much) smaller enhancement factor, as detailed in
section 6.5.2.

Fig. 6.14 shows EBS measurements on an anisotropic sample, for the two indepen-
dent orientations, and for the two circular polarization channels. In the helicity preserving
channel (open symbols) the backscatter cone is clearly visible and strongly anisotropic.
The narrower EBS cone in the‖ direction implies that light diffuses further in the‖ than
in the⊥ direction. In the anisotropic EBS theory (see Eqs. 6.17 and 6.18), the width of
the EBS cone depends on the isotropic transport mean free path, the extrapolation length,
and the three diagonal components of the diffusion tensor. The ratio of EBS widths along
the two directionsx andy is the square root of the ratio of diffusion tensor components:√

Dyy/Dxx = 1.90± 0.15. The anisotropy in the diffusion tensor found in the anisotropic
EBS agrees very well with the anisotropy found in the dynamic transmission in section 6.4.

The isotropic transport mean free path from this anisotropic sample can be calculated.
The width of the EBS cone in the⊥ cross-section (in the(yz) plane), depends on the
isotropic mean free path and

√
Dyy/Dzz. In the case of a uniaxial material oriented along the

x direction, such as considered here, theyy andzzcomponents of the diffusion tensor are
equal. The isotropic mean free path can be determined directly from the⊥ cross-section of
the EBS cone, along with an estimation of the extrapolation ratio. In section 4.4, measure-
ments of the refractive index of porous GaP in the ‘normal’ geometry (i.e., pores growing
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6.5 Anisotropic wave diffusion

normal to the wafer surface) are shown. The refractive index of the samples etched un-
der the same conditions, apart from the geometry, is taken as characteristic of the bulk of
the anisotropic samples used in this chapter, namelyne = 1.40± 0.05. An interface be-
tween a diffusive material with such refractive index and air would have an extrapolation
ratio τe = 1.97± 0.22. The anisotropic samples have two additional interfaces, coming
from the extra GaP layer and the SiN coating, having respectively a refractive index of
3.3 and 2.0. Taking the two extra layers into account, the properties of the whole inter-
face can be calculated (see Eq. 4.15) asτe = 2.95± 0.20. The transport mean free path,
measured from the EBS width and corrected for the extrapolation ratio is calculated from
Eq. 2.83. The isotropic transport mean free path in the anisotropic samples can be evaluated
as` = (0.80± 0.04)µm.

Another interpretation of the anisotropic diffusion results

Within the theory for anisotropic diffusion presented in section 6.2, all anisotropic effects
are due to the diffusion tensor and not to an anisotropic mean free path. Intuition and
rigorous isotropic theory (e.g., chapter 2) shows that stationary measurements are mainly
dependent on the mean free path, and dynamic measurements are mainly dependent on the
diffusion constant. A theory of anisotropic diffusion including the rigorous treatment of
the interface is needed to resolve this discrepancy.

Considering that stationary measurements depend on the mean free path, and dynamic
measurements on the diffusion constant, the results of sections 6.3 and 6.5.1 should be
interpreted fully in terms of transport mean free path. The anisotropy in diffusion has
now been found in the diffusion tensor and the mean free path, asD‖/D⊥ = 4.1± 0.4 and
`‖/`⊥ = 2.00±0.15. In the isotropic case, the diffusion constant and the transport mean free
path are related such thatD = vE`/3 (see section 2.4.4). If this relation between diffusion
constant and mean free path still holds in the anisotropic case within each component of
the diffusion tensor, the ratio of energy velocity along the two directions‖ and⊥ can be
deduced, as2.0± 0.3. It can also be argued [200] that the diffusion constant is the ratio of
an anisotropic stationary part`2 and an isotropic dynamic partτmf . Within the anisotropic
hopping model, in Eq. 6.2, the diffusion constant is the product of the square of the mean
free path and the ratep = 1/τmf . The mean free time, being a probability to scatter after
a certain time, can also bein principle anisotropic, since the probability to scatter in a
certain time in different directions can be different, as is shown in the hopping model from
section 6.2.1. The mean free time in the anisotropic porous GaP is found to be isotropic
within 20%.

6.5.2 EBS in helicity non-preserving channel

Before discussing the measurements on EBS in the helicity non-preserving channel (see
Fig. 6.14, closed symbols), a short review of the experimental and theoretical literature on
the subject is presented.

The EBS cone has been shown to exist in the cross-polarized (linear) channel in the
case of Rayleigh scatterers and to slowly vanish with increasing anisotropy of the scatterers
[201,202]. EBS has also been shown to exist in the helicity non-preserving channel in the
case of Rayleigh scatterers and to disappear with optical activity [132].
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Measurements on nematic liquid crystals [190, 203] show the absence of EBS cone,
within 1%, in the cross-polarized channel, or an enhancement factor evaluated to a maxi-
mum of 3% [202]. An EBS cone in the linear orthogonal channel has been measured [204]
from suspensions of polystyrene spheres of diameter 0.2µm and 1µm, with enhancement
of respectively 10% and 20%. EBS cones in the linear orthogonal and in the helicity non-
preserving channels of a cloud of cold rubidium atoms were reported, with enhancements
around 10% [205].

Nematic liquid crystals are very anisotropic scatterers and are birefringent. Both ef-
fects contribute to the reduction of the enhancement factor in the cross polarized channel.
Spherical colloids are neither very anisotropic nor birefringent, and therefore display an
enhancement in the cross-polarized channel. The physics of the EBS cone in cold atoms is
beyond the reach of the classical theories mentioned here [132,201,202].

The EBS measurements of anisotropic porous GaP in the helicity non-preserving chan-
nel, as seen from the filled symbols in Fig. 6.14, do not show any observable EBS cone, for
both orientations of the sample. More quantitatively, the enhancement factor in the non-
preserving polarization channel is smaller than 2%. The scattering in porous GaP is very
anisotropic, reducing the expected enhancement factor. Another argument for the absence
of EBS cone in the non-preserving polarization channel is the polarization dependence of
the refractive index of the material (birefringence, or optical activity). In the case of liq-
uid crystals [190, 203], the birefringence introduces a large phase shift between ordinary
and extraordinary modes of propagation. Birefringence therefore drastically reduces the
enhancement of the EBS cone in the cross-polarized channel. Considering optical activity,
the enhancement of the EBS cone in the helicity non-preserving channel would vanish for
` � λ/∆n, where∆n is the difference in refractive index for the two circular polarizations,
andλ the wavelength of light in vacuum. Applying this condition to the porous GaP sam-
ples implies∆n� 1/2, which, compared to an effective refractive index around 1.5, seems
unrealistically big.

6.6 Conclusions

A generalization of the diffusion equation to an anisotropic medium was presented. In the
absence of a rigorous treatment of the boundary conditions of an anisotropic medium, only
an anisotropic diffusion constant, along with an isotropic transport mean free path, can
be considered. In this model where anisotropy is solely present in the diffusion constant,
the theoretical expectations for all measurements, stationary and dynamic diffusion and
EBS, depend on this dynamic anisotropy, in contrast with the isotropic case and intuition.
Anisotropic samples were produced by electrochemical etching of GaP. Apart from the
escape function, all optical measurements, both stationary and dynamic, on these samples
were found to be anisotropic. The wave diffusion, in addition to the diffusion, is anisotropic
in our samples. The anisotropy factor from all these measurements were found equal,
within the experimental accuracy, to the square root of the anisotropy in diffusion constant.
Our experimental results are therefore compatible with our theoretical predictions.
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Chapter 7

Capturing a light pulse
in a short high-finesse cavity

The present chapter is set apart from the rest of the thesis since it does not deal with mul-
tiple scattering or porous gallium phosphide. This last chapter can be read independently
from the previous chapters, and is self-explaining. Although originally not linked to mul-
tiple light scattering, the subject of capturing a light pulse in a cavity can be seen as a
macroscopic equivalent of the switching of an (Anderson) localized state.

7.1 Introduction

There exist many examples of applications in optics where a combination of high (peak)
intensity and narrow spectral width is desirable or even essential. One example is high-
resolution ultraviolet or vacuum ultraviolet spectroscopy [206,207] where second-harmonic
generation1 (SHG) or four-wave mixing is needed to produce the appropriate wavelengths.
A second example is laser isotope separation [207, 209, 210] where the yield depends on
intensity but resolution is essential due to the smallness of isotope shifts. Generally speak-
ing, high power and high resolution are mutually exclusive; the former belongs to the realm
of pulsed lasers, the latter to the continuous-wave (cw) light sources. The present chapter
describes a way in which this dichotomy can be circumvented: the aim is to obtain a light
power characteristic of pulsed sources, yet at cw-bandwidths. An incident intense light
pulse, captured right in a high-finesse cavity, offers both high intensity and narrow band-
width.

It is simple to capture a short pulse in a cavity,i.e., when the duration of the pulseτp is
less than the round-trip time of the cavityτcav. One can simply use an On/Off switch input
coupler, similar to for example Q-switched lasers or regenerative amplifiers [211], to ‘slam
the door shut’, after the pulse has entered. Because the incident pulse is fully captured
inside the cavity, all its energy has to be distributed inside the resonances, the ‘comb’ of the
cavity. The intensity of the light inside the cavity is enhanced at each resonance according
to the number of round-trips before leaving the cavity.

1and in particular intra-cavity SHG [208].

103



Capturing a light pulse in a short high-finesse cavity

Figure 7.1: Calculated power spectrum of a short pulse captured inside a cavity of finesseF = 30,
normalized to the incident pulse peak power. The incident pulse is here multiplied by 10 for read-
ability. The increase of intensity of the captured pulse at the resonances is due to the enhancement
of the cavity itself and to the compression of the total energy of the incident pulse into the narrow
peaks. The frequency scale is in units of the separation between the cavity resonances. See Fig. 7.6
and section 7.3 for the quantitative derivation.

In Fig. 7.1 (which is fully explained and derived in section 7.3), the power spectrum of
a short pulse captured in a cavity of finesseF = 30 is compared to the incident pulse. The
power spectrum of the captured pulse is made of a number of narrow and intense peaks, at
the resonant frequencies of the cavity. Each peak is narrow, but the series of peaks retains
the original bandwidth of the pulse,i.e., the shape, or envelope, of the incident pulse is
maintained in the cavity. If the pulse is filtered by, instead of captured in, a cavity of finesse
F = 30, the power spectrum of light inside the cavity keeps the same shape but is only
increased by a factor 10 compared to the incident pulse.

To achieve the desired spectral narrowing, while retaining a high power, a short cavity
is needed,i.e., τcav much smaller thanτp. In the frequency domain the short cavity corre-
sponds to the situation where only one cavity mode is overlapping with the pulse spectrum,
in other words, the free spectral range (frequency separation between two resonances) of
the cavity is larger than the pulse bandwidthΓ.

In order to capture the pulse, instead of filtering it through the cavity, the input mirror
has to be switched, as mentioned in the case of a short pulse. Using an On/Off switch in
order to capture a pulse in a short cavity is far from optimal: the switching can be done
either too early or too late. Closed too early, the incident pulse has no chance to enter
the cavity. Closed too late, most of the pulse enters the cavity, but leaks out immediately
through the still-open input coupler. In this scheme, capturing a long pulse thanks to an
instantaneous switch either compromises on obtained power, reduced bandwidth, or both.

The method described here [92] is based on the following idea: rather than using the
variable input coupler as an open/close switch, the reflectivity of the input coupler is slowly
changed from 0 to 1 on a time scale comparable toτp, hence much longer thanτcav. There
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Figure 7.2: Calculated power spectrum of a long pulse captured inside a cavity of finesseF =
30, normalized to the incident pulse peak power. The incident pulse is here multiplied by 10 for
readability. Only one cavity mode overlaps with the incident pulse spectrum (although two extra
modes are just visible, since also enhanced). The long pulse captured inside the cavity has a reduced
bandwidth, but keeps all of its initial energy: the peak power is greatly enhanced.

exists an appropriate choice of switching function of the reflectivity which leads to zero
loss: the value of the input reflectivity is chosen at each instant in time such that the fraction
of the light already in the cavity that is transmitted back out exactly cancels the reflected
fraction of the input pulse. This method can be called dynamic impedance matching.

Unlike the usual situation where a cavity acts as a filter [167], discarding the frequency
components outside its resonant modes, capturing a pulse implies that all the pulse energy
inside the cavity circulates at one of the resonance frequencies. The spectrum of the pulse
has been compressed into the single available cavity mode, as depicted in Fig. 7.2. In order
to capture effectively the pulse inside the cavity, the knowledge of the shape and arrival
time of the incident pulse as well as its central frequency is necessary. If implemented
successfully the result of the scheme is remarkable: a pulse of light is turned into a nearly
continuous-wave signal, of same energy, which decays on a time scale only limited by the
finesseF of the cavity.

The fact that the full energy is transferred in the cavity actually leads to an increase in
power in the cavity relative to that of the incoming pulse, contrary to what one might guess.
The reason is simply energy conservation: the peak power inside the cavity is the pulse
energy divided by the cavity round-trip timeτcav, which by assumption is much smaller
than the pulse durationτp.

The time to excite a mode inside a stationary cavity increases with the finesse. This
incoupling time is in fact equal to the timeτr that light circulating within one mode of the
stationary cavity needs to leak out via the non-perfect mirrors. In the case of a stationary
high-finesse cavity, the time needed to excite one cavity mode is therefore much bigger
than the round-trip timeτcav. Capturing a long light pulse in a cavity of high finesse, on the
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Capturing a light pulse in a short high-finesse cavity

other hand, excites the single cavity mode within the switching time,i.e., within the pulse
duration. The pulse duration is explicitly taken much smaller than the ring-down timeτr

in this switching method. Exciting a single cavity mode is therefore much quicker in the
dynamic, or switched, than in the stationary case.

Note that in the two examples shown in Figs. 7.1 and 7.2, respectively a short and
long pulse captured in the same cavity, the enhancement in peak power is smaller in the
long pulse case (∼ 55) than in the short pulse case (∼ 100). The enhancement arises from
the compression of nearby frequency components into the resonant frequency. In the case
of a Gaussian pulse for example, the power of the off-resonance frequency components
quickly decreases. The best enhancement in power from a pulse captured in the same
cavity would arise from a square-wave incident pulse: all the frequency components which
can be compressed into the cavity mode are available in this incident pulse.

An essential element in the practical implementation of the scheme is the variable input
coupler for which we use a combination of a polarizing beam splitter, a Pockels cell and
polarization optics, along with precisely-timed switching electronics.

Along with the high-power and narrow-bandwidth applications already mentioned, a
very different use of the scheme can be envisaged: reversible storage and subsequent re-
lease of a light pulse with almost 100% efficiency. As the method is essentially adiabatic,
the stored light can readily be released again by reversing the process. The holding time is
limited only by the finesse of the closed cavity,i.e., how many round-trips light can travel
before leaking out through the non-perfect mirrors. This capture and release application
bears some analogy with experiments that have attracted considerable attention recently.
In papers from two different groups [212,213] it was shown that light could be effectively
‘slowed down’ to zero velocity and stored in a medium of atomic vapor. Those experi-
ments use a control field to transform the character of a coupled light-atom coherence from
almost purely light-like to almost atomic, in a reversible adiabatic manner. The capture
of pulses in a cavity proceeds along somewhat analogous lines. The ‘atomic-like’ state of
refs. [212] and [213] can be compared to the cavity with the light captured inside. Clearly
the analogy is far from complete as the experiment presented here is purely classical. One
important practical consequence of this difference is that, unlike the atom, the narrow-band
light inside the cavity is actually available for intra-cavity experiments,e.g., intra-cavity
SHG. Note that, in order to perform such capture and release experiments, an improved
version of our experiment, which is presented here as a proof of principle, is required.

Another scheme for all-optical stopping and storing of light has been presented [214,
215]. An array of micro-resonators was shown, theoretically and numerically, to slow down
a pulse of light to arbitrarily small group velocities.

The following section of this chapter contains an introduction to the theoretical descrip-
tion of a pulse in a stationary cavity. Section 7.3 makes the theoretical step to the dynamic
cavity, quantitatively describing the capture scheme, for both short and long pulse. In sec-
tions 7.4 and 7.5 the special input coupler and our experimental methods are discussed. In
section 7.6 the experimental results are presented and analyzed.
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Figure 7.3: Schema of a ring cavity
with 2 high reflectivity mirrorsM3 and
M4, a leaking mirrorM2 of (field) re-
flectivityα and an input couplerMi of
(field) reflectivityρ. The intensity re-
flectivity R ≡ ρ2 of the input coupler
can be time-dependent, as is described
in section 7.3.
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7.2 Introduction to the theory of a cavity

Consider a ring cavity2 in which light travels in one direction, as sketched in Fig. 7.3.
Four waves are coupled with each other by the input couplerMi : the incident fieldAin, the
reflected fieldArefl, the field just after entering the cavityAcav, and the field in the cavity
after one round-trip, back on the input couplerAround. The complex fieldsAround andAin

are reflected by the input coupler according to the reflection coefficientρ. The mirrorM2

has a field reflectivityα smaller than 1 and lets light leak out of the cavity. The leakage
throughM2 can also represent the losses of the cavity. The leakage throughM2 is in fact
transmitted by the cavity, and its field is denotedAtrans. The optical length of the cavity is
taken asL and the leakage mirrorM2 can be taken at any optical lengthLt smaller thanL.

All fields are considered in the plane-wave approximation3. Pulses are assumed to be
Fourier-transform limited4. The incident field for example is

Ain(t, z) =
∫

S(ω) exp[−i(ωt − kz)] dω, (7.1)

whereS(ω) is the frequency spectrum,ω andk = ω/c respectively the frequency and wave
vector of the incident light. The incident field oscillates in timet and in the coordinatezof
its propagation direction.

The two fields leaving the input coupler,Acav andArefl, are each a sum of the two fields
impinging onMi , weighted by the proper transmission and reflection coefficients. The field
in the cavity just before the input coupler,Around, is the remainder of the field, reflected
from the leakage mirror, after traveling one round-trip. The transmitted field,Atrans, is the
transmission through the leakage mirrorM2 of the light inside the cavity.

2Another possibility is a linear cavity, where light is reflected on the same path back. The modes of a linear
cavity are made of stationary waves. The theory of a pulse capture inside a linear cavity can also be done, but is
not detailed in this thesis.

3In fact, the complex field amplitudesAi should be taken as the amplitude in the center of a Gaussian mode.
The waist of the Gaussian modes are equal for the four fields at the input coupler, and can be taken equal to the
waist of the mode at the leakage mirror.

4In the actual experiment, in section 7.5, this assumption is not strictly true. Yet, the results in section 7.6 will
empirically show that the method presented here is still applicable to pulses which are not Fourier-limited.
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The coupling of all the fields is therefore

Acav(t) =

√
1− ρ2(t) Ain(t) + ρ(t)Around(t) (7.2)

Arefl(t) =

√
1− ρ2(t) Around(t) − ρ(t)Ain(t) (7.3)

Around(t) = αAcav(t − τcav) (7.4)

Atrans(t) =
√

1− α2 Acav(t − Lt/c), (7.5)

whereτcav ≡ L/c is the round-trip time of the cavity. In principle the field reflectivitiesρ
andα are complex but are here set as positive without loss of generality. Note that the field
reflection of light by the input coupler changes sign with the reflecting side. At an interface
glass-air for example, the Fresnel reflection coefficient is positive for the reflection on the
glass side, and negative on the air side [167]. The reflectivity of the input couplerρ(t) is
here written in the most general form as time-dependent, which gives the obvious follow-
up to the next, dynamic, section. The leakage reflectivityα is kept constant, in the present
and following section alike.

The field of light inside the cavity follows a recurrent equation which can easily be
solved:

Acav(t) =

√
1− ρ2(t) Ain(t) + αρ(t)Acav(t − τcav) (7.6)

Acav(t) =

√
1− ρ2(t) Ain(t) (7.7)

+

∞∑
n=1

αn
√

1− ρ2(t − nτcav) Ain(t − nτcav)
n−1∏
m=0

ρ(t −mτcav)

 .
The reflected and transmitted light from the cavity are related to the light inside the

cavity according to

Arefl(t) = α

√
1− ρ2(t) Acav(t − τcav) − ρAin(t) (7.8)

Atrans(t) =
√

1− α2 Acav(t) exp(ikLt). (7.9)

According to Eq. 7.7, the field of light inside the cavity is linearly related to the incident
field. Likewise, both transmitted and reflected fields are linearly related to the incident field.
The cavity is shown to ‘scatter’ the incident light fromk in = kẑ to ktrans andkrefl, with
scattering coefficients equal toArefl/trans(t)/Ain(t − nτcav) and scattering delaynτcav (+Lt/c
in transmission). In the language of scattering, used till this chapter, we just obtained a
T-matrix for this cavity scatterer.

7.2.1 Stationary cavity

In the case of a usual, stationary, cavity whereρ does not depend on time, the solution is
found as

Acav(t) =

√
1− ρ2

∞∑
n=0

αnρnAin(t − nτcav). (7.10)
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Developing the incident light into its Fourier components (see Eq. 7.1, forz= 0) gives

Acav(t) =

√
1− ρ2

∞∑
n=0

{
αnρn

∫
S(ω) exp(−iωt) exp(iωnτcav) dω

}
(7.11)

Acav(t) =

√
1− ρ2

∫
S(ω) exp(−iωt)

1− αρexp(iωτcav)
dω, (7.12)

where the sum and the integral can be swapped due to the uniform convergence of the
Fourier transform. The subsequent geometrical series is summed under the assumption
that |αρexp(iωτcav)| < 1, which is always true in a passive realistic cavity.

The frequency spectrum in the stationary cavity is the inverse Fourier transform of
Acav(t):

Acav(ω) =
S(ω)

√
1− ρ2

1− αρexp(iωτcav)
. (7.13)

In the case of a monochromatic source, forS(ω) = S0δ(ω−ω0), the usual [167] ‘cavity
comb’ is retrieved for the intensity of light inside the cavity: in the case of a good cavity,
i.e., ρ andα close to 1, the power spectrum in the stationary cavity is very small except for
discrete frequencies, the resonances, where the intensity is greatly increased by the cavity.

Icav(ω) ≡ |Acav(ω)|2 =
(1− ρ2)|S(ω)|2∣∣∣1− αρexp(iω0τcav)

∣∣∣2 . (7.14)

A resonance of the cavity appears every timeαρexp(iω0τcav) approaches 1. The bandwidth
of the resonance is then dependent on the reflectivity coefficients of the mirrors. The free
spectral range is the frequency separation between two resonancesωFSR. The finesse5 F of
a cavity is defined as the ratio of the free spectral range and the bandwidth (or full width at
half maximum) of a resonance.

F ≡
ωFSR

ωr
=
π

2
arcsin−1

(
1− ρα
2
√
ρα

)
. (7.15)

Fig. 7.4 shows the power spectrum of a pulse, respectively transmitted and reflected
by a cavity of finesseF = 30. The power spectrum of the light inside the cavity is
found according to Eq. 7.9, and is equal to the transmitted power spectrum multiplied by
1/(1− α2).

It is easily checked that the sum of the power spectrum reflected by and transmitted
through the cavity exactly equals the incident power spectrum (see Fig. 7.4). The scattering
of the cavity is elastic, or in other words, the T-matrix of the cavity fulfills the optical
theorem at each frequency. The stationary cavity is a filter: only the frequency components
of the incident pulse within the resonances of the cavity are transmitted, whereas the rest
does not penetrate the cavity and is reflected.

5In other fields of physics, another important parameter is the quality factor (or Q-factor). The Q-factor is
characteristic of each resonance of a cavity or resonator. The Q-factor is defined as the ratio of the frequency and
the bandwidth of a resonance.
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Figure 7.4: Normalized power spectrum in transmission and reflection of a pulse of duration smaller
than the cavity round-trip time. In transmission, only the frequency components of the incident pulse
which are within the resonances of the cavity remain. In reflection (shifted down by 1 for readability)
remains the rest of the incident spectrum. The cavity has a finesseF = 30, with ρ = α =

√
0.9.

The power spectrum of the light inside the cavity is equal to the transmitted spectrum multiplied by
1/(1− α2) = 10. The frequency scale is in units of the free spectral range.

Taking a Lorentzian frequency spectrum for the incident light, the bandwidthWFWHM

of the spectral peaks inside the cavity is given for later reference:

S(ω) =
S0Γ

(ω − ω0)2 + (Γ/2)2
(7.16)

WFWHM =
1
√

2

√√
(Γ2 + ω2

r )2 + 4ω2
r Γ

2 − Γ2 − ω2
r . (7.17)

7.3 Theoretical description of the pulse capture

The usefulness of a cavity is obvious: in transmission, or inside the cavity, a power spec-
trum with sharp resonances is available, where the sharpness is only limited by the reflec-
tivity coefficients of the mirror. The drawback of a cavity is also obvious: all the gain in
narrow bandwidth implies a loss in power, namely the filtering out of the off-resonance
frequency components.

In order to couple the full incident power in the cavity, the input coupler is dynami-
cally closed. The reflectivity function of the input coupler is changed so that the intensity
reflected by the cavity vanishes at all time (see Eq. 7.8).
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0 = Arefl(t) = α

√
1− ρ2(t) Acav(t − τcav) − ρ(t)Ain(t) (7.18)

⇐⇒ ρ2(t) =
α2A2

cav(t − τcav)

A2
in(t) + α2A2

cav(t − τcav)
. (7.19)

This dynamic reflectivity function of the input coupler allows the full capture of any inci-
dent pulse, short or long, inside the cavity.

7.3.1 Capturing a short pulse

In the case of a short pulse (τp � τcav), when most of the time both intensities just before
and just after the input coupler (Ain andAcav) vanish, the reflectivity can be chosen by hand
as a step function:

ρs(t) = ρ
2
s(t) = Θ(t − ts), whereτp � ts, τcav− ts. (7.20)

The origin of time is set as the moment when the center of the pulse passes the input
coupler. The Heaviside functionΘ(t − ts) makes the reflectivity 0 before the pulse arrives,
leaving the cavity fully open, and makes the reflectivity 100% after the pulse has entered.
The switch timingts should be after the full pulse has entered and before the return of the
pulse on the input coupler after one round-trip. Typicallyts ∼ τcav/2.

Using the Heaviside reflectivity function in the exact function forAcav (Eq. 7.7) gives

Acav(t) =
[
1− Θ(t − ts)

]
Ain(t) (7.21)

+

∞∑
n=1

αn
[
1− Θ(t − nτcav− ts)

]
Ain(t − nτcav)

n−1∏
m=0

Θ(t −mτcav− ts)

 .
The product of the Heaviside function is 0 as soon as one of the functions (for0 ≤

m ≤ n − 1) is 0. Thenth term in the sum therefore vanishes fort − (n − 1)τcav − ts ≤

t − mτcav− ts < 0, i.e., n > 1 + (t − ts)/τcav. Similarly thenth term in the sum is zero for
t− nτcav− ts ≥ 0, i.e., n ≤ (t− ts)/τcav. The only non-zero term in the sum is therefore such
that(t − ts)/τcav < ns ≤ 1+ (t − ts)/τcav. The sum in Eq. 7.21 reduces to one term which is

Acav(t) = αnsAin(t − nsτcav)

ns = floor

(
1+

t − ts

τcav

)
≥ 0,

(7.22)

wherefloor(x) is the largest integer smaller or equal tox. Remember that the sum in
Eq. 7.21 is forn positive, thereforens must also be positive. This condition ofns positive
(or equivalentlyt ≥ ts − τcav) insures the physical need of having no light inside the cavity
before the pulse has entered.

As seen from Fig. 7.5, which is the intensity of a short pulse captured in the cavity, the
pulse just runs around in the cavity, without interfering with itself. The overall intensity
of the pulse in the cavity is reduced each round-trip by(1 − α), leaking out through the
non-perfect mirror.
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Capturing a light pulse in a short high-finesse cavity

Figure 7.5: Time-resolved intensity of light of a short pulse captured in the cavity. The incident pulse
matches the first peak att = 0 since it is fully coupled in the cavity. The pulse then runs around in the
closed cavity of finesseF = 30, only leaking through the non-perfect mirror, whereα =

√
0.81. The

dashed curved isα2t/τcav.

The frequency spectrum of the short pulse inside the cavity is

Acav(ω) =
∫ ∞

ts−τcav

αnsAin(t − nsτcav)
exp(iωt)

2π
dt. (7.23)

In order to solve this integral, the time origin is shifted byts, and the integral is split into
an infinite sum of integrals:∫ ∞

−τcav

=

∫ 0

−τcav

+

∫ τcav

0
+ · · · +

∫ (n+1)τcav

nτcav

+ · · · =

∞∑
n=−1

∫ (n+1)τcav

nτcav

. (7.24)

In each component of the sum of integrals, the origin of time is taken independently so that
all integrals span the same range[0; τcav[. Then

Acav(ω) = exp(iωts)
∞∑

n=−1

[
αn+1 exp(iωnτcav)

] ∫ τcav

0
Ain(t + ts− τcav)

exp(iωt)
2π

dt.(7.25)

The geometrical series gives rise to the expected cavity comb:

Acav(ω) =
exp(iωts)

2π
exp(−iωτcav)

1− αexp(iωτcav)

∫ τcav

0
Ain(t + ts − τcav) exp(iωt) dt. (7.26)

The frequency spectrum of the short pulse captured in the cavity is therefore the product of
the cavity comb and a term depending on the incident pulse.

The spatial shape of an incident pulse of Gaussian frequency spectrum is also Gaussian:

Ain(t) =

∫ ∞

−∞

exp

[
−

(ω − ω0)2

4Γ2

]
exp(−iωt) dω

= 2
√
πΓexp(−iω0t) exp

(
−Γ2t2

)
. (7.27)
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7.3 Theoretical description of the pulse capture

Figure 7.6: Normalized power spectrum in transmission of a short pulse captured in a cavity of

finesseF = 30, with α =
√

0.81. The switched cavity is not a filter: the frequency components of
the incident pulse are compressed inside the resonances of the closed cavity. The power spectrum of
the light inside the cavity is equal to the transmitted spectrum multiplied by1/(1 − α2) ' 5.3. The
frequency scale is in units of the free spectral range.

The field in the dynamic long cavityAcav(ω) can be made explicit in the case of such a
Gaussian input pulse:

Acav(ω) =
1/2

1− αexp(iωτcav)
exp

[
−

(ω − ω0)2

4Γ2

]
(7.28)

×

{
erf

(
Γts − i

ω − ω0

2Γ

)
− erf

[
Γ(ts − τcav) − i

ω − ω0

2Γ

]}
,

whereerf(x) is the so-called error function which, for anyx ∈ C, has the property

erf(Γx) ≡
2Γ
√
π

∫ x

0
exp

(
−Γ2t2

)
dt. (7.29)

The transmitted intensity through the cavity is related to the intra-cavity intensity by a
ratio (1−α2) (see Eq. 7.9). The reflection of the switched cavity vanishes, as is specified by
Eq. 7.18. Fig. 7.6 shows the transmission coefficient through a switched cavity of finesse
F = 30. The cavity after switching is therefore comparable to the stationary cavity shown
in Fig. 7.4. Although the total energy of the incident pulse is conserved after transmission
through the switched cavity, its power spectrum has been modified. Frequency components
which can not exist in the cavity,i.e., outside resonances, are adiabatically pushed toward
the resonant frequencies. The switched cavity is not an elastic scatterer. Note that the over-
all bandwidth of the captured pulse is not reduced, but the spectral brightness (the power at
a single frequency) is greatly increased at the resonance frequencies. Fig. 7.1 in the intro-
duction of this chapter is the intra-cavity intensity corresponding to the transmission shown
in Fig. 7.6.
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Capturing a light pulse in a short high-finesse cavity

If the same capture scheme is possible when only one resonance of the cavity overlaps
with the incident pulse spectrum,i.e., for a long pulse, we expect a real narrowing of the
bandwidth along with an increase of the power at the resonance frequency.

7.3.2 Capturing a long pulse

In the case of an incident pulse of duration of same order or larger than the round-trip
time, the step reflectivity function considered in the previous section (Eq. 7.20) can not be
used. The optimal reflectivity function, depending on the exact intensity inside and incident
on the cavity, is Eq. 7.19. Substituting the optimal reflectivity function in the equation for
Acav(t) (Eq. 7.7) gives a non-linear recurrent equation for which no analytical solution could
be found.

A numerical simulation of the short cavity case can be made to gain some feeling about
the behavior of the capture scheme. Such a simulation can be done in the time domain,
since the switching function of the input coupler reflectivity is adapted to the temporal
shape of the incident pulse. However, considering the experiments, the main goal of the
method is to provide a spectral narrowing of the captured light and measurement of this
narrowing is best performed as directly as possible, hence in the frequency domain.

Combining Eqs. 7.6 and 7.18, we obtain an equation on the amplitude of the fields:

|Acav(t)|
2 = |Ain(t)|2 + α2 |Acav(t − τcav)|

2 . (7.30)

In the case of a pulse of duration much larger than the round-trip time, the intensity inside
the cavity does not change much during one round-trip, and a first-order Taylor expansion
can be used:

d
dt
|Acav(t)|

2 =
|Ain(t)|2

τcav
−
|Acav(t)|

2

τr
, (7.31)

whereτr ≡ τcav/(1− α2) is the ring-down time of the cavity, or how long light stays in the
cavity before leaking out.

Let us first consider an ideal cavity without losses so thatτ−1
r vanishes, or equivalently

of infinite finesse. The condition of vanishing reflectivity (Eq. 7.18) being fulfilled, the
intensity inside the cavity is the integral of the incident pulse:

τcav |Acav(t)|
2 =

∫ t

−∞

dτ |Ain(τ)|2 . (7.32)

According to Eqs. 7.19 and 7.32, for a given input pulse shape, the reflectivity function
R(t) ≡ ρ2(t) appropriate for coupling all the energy into the cavity can be determined.

Fig. 7.7a shows an example of capture of a Gaussian pulse of unit width and height in
a cavity withτcav = 0.086. The ratio ofτp andτcav matches the experimental value in sec-
tion 7.5. In the lossless case, after switching, the cavity is completely closed and the light
circulates forever, with an intensity which exceeds that of the peak of the incident pulse
by more than an order of magnitude. In the cavity of infinite finesse, light travels there-
fore in a single, infinitely narrow, frequency band around the cavity resonance frequency
which coincides with the input pulse frequency. The effect of switching the input coupler
is to adiabatically change the spectrum from the initial Fourier transform of the pulse shape
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7.3 Theoretical description of the pulse capture

Figure 7.7: Intensity inside the cavity as a function of time for a Gaussian input pulse of unit width
and height, andτcav = 0.086. In (a), curves are compared for the optimally switched reflectivity,
in a cavity with various losses. The switching scheme captures the light pulse. In (b), the curves
correspond to the same cavity but with a fixed reflectivity ofMi , for R= 80%andR= 98%. The solid
curves correspond to 2% loss. The dashed curve corresponds to 10% loss andR= 80%. The light in
a stationary cavity never reaches the same bandwidth and power characteristics as in the switched
case.

into the Lorentzian cavity spectrum. The frequency components of the pulse are gradually
pushed closer to the central cavity mode as the cavity finesse increases,i.e., as the cavity
closes, or the reflectivity of the input coupler increases.

The use of Gaussian pulses is not essential. In principle the switching method works
even for a square-wave pulse if its duration exceedsτcav. In the case of an incident square
pulse the time-dependent reflectivity ofMi changes in small discrete steps6 every time the
leading edge of the pulse inside the cavity arrives back at the input coupler.

A discussion of how in practice the cavity length is matched to the central frequency
of the pulse is deferred to section 7.5. In section 7.4 the possibility to allow for a modest
chirp rather than using purely transform limited pulses is commented on.

The requirement that the losses are zero is now relaxed. Even with very good compo-
nents a realistic minimum power loss is 2% per round-trip. Thusτr ≈ 50τcav. Eqs. 7.19
and 7.31 can also be numerically solved when including finite losses. The results of the
optimally switched cavity for both 2% and 10% loss are shown in Fig. 7.7a. For the same
R(t) but different losses the stored intensity now decays on a time scale characteristic of the
additional loss.

Note that in all cases of the switched cavity, in Fig. 7.7a, the mode inside the cavity
is fully excited with a typical time comparable to the pulse duration. The ring-down time
τr, or equivalently the time to excite a single mode of the equivalent stationary cavity, is
set by the losses. At a typical loss of 2% for example, the decay of the intensity inside the
switched cavity is much slower than the time needed to excite the cavity mode. The cavity
mode can therefore be excited much more quickly in a dynamic than in a stationary cavity.
The inherent slowness of a high-finesse stationary cavity can be avoided by switching the
cavity, for any captured pulse of duration smaller than the ring-down time.

In Fig. 7.7b the intra-cavity intensity versus time for two fixed reflectivities of the input

6Such small steps are unpractical to implement in the time-scales considered in section 7.5.
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Capturing a light pulse in a short high-finesse cavity

Figure 7.8: In (a), intensity in the cavity as a function of time for the same parameters as in Fig. 7.7.
Each curve (full, dashed, and dotted) corresponds to a different reflectivity switching function, plotted
in (b). The full curves correspond to the optimal switching of the cavity. The dashed curves corre-
spond to a switching function experimentally easy to implement. The dotted curves correspond to the
same experimental reflectivity function as for the dashed curves, with a shift in timing. All curves are
for a cavity with 2% loss. The switching scheme is not very sensitive to the exact switching function.

coupler are shown for a cavity with 2% loss. Two cases are presented:R = 80%, which
corresponds to the highest possible peak intensity, andR = 98%. The former curve (R =
80%, loss 2%) has a peak power comparable to the switched case (loss 2% in Fig. 7.7a), but
a faster decay, implying a larger bandwidth of the light in the fixed cavity. The latter curve
(R= 98%, loss 2%) decays nearly as slowly as in the switched case but the peak amplitude
is much smaller. For higher loss rates the advantage of the time-dependentR diminishes:
for 10% loss the slower decaying tail in the switched case (loss 10% in Fig. 7.7a) than in
the constant reflectivity case (R= 80%, loss 10% in Fig. 7.7a) is still just visible. This loss
rate of 10% marks the boundary of the usefulness of the switching reflectivity method and
corresponds to a ring-down time of the order of the pulse duration.

A comparison of Figs. 7.7a and 7.7b indicates that for any fixed reflectivity of the input
coupler the intra-cavity intensity decays faster than for the switched case for given loss.
As stated before this faster decay implies that the power spectrum in the switched case is
always narrower than in the stationary case.

One may well ask how critically the exact temporal behavior ofR(t) determines the
fraction of light that can be coupled into the cavity. As a check, the perfect no-reflection
condition Eq. 7.18 is relaxed and the optimal switching functionR(t) is replaced by a func-
tion which results from an exponentially decreasing voltage on the Pockels cell used to
implement the switching mirror, as described in the next section. Such an exponentially
decreasing voltage leads to the following dependence of the effective reflectivity:

R(t) =
1

1+ tan2 θ(t)
, (7.33)

with θ(t) = (π/2)
{
1− Θ(t)

[
1− exp(−t/τs)

]}
, (7.34)

whereτs is the relaxation time of the Pockels cell and switching electronics. The switch
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7.4 The variable input coupler

Figure 7.9: The input coupler consisting of a polar-
izing beam splitter BS, a Pockels cell, two half-wave
platesλ/2, two quarter-wave platesλ/4. The full
lines on the wave plates indicate the orientation of the
optical axes. The full arrows indicate the direction of
polarization. The light inside the cavity is transmitted
through BS, and the incident light, of crossed polar-
ization, is reflected on BS. The voltage on the Pockels
cell is chosen so that the sum of the cavity and inci-
dent fields is always rotated back into the cavity mode,
of horizontal polarization.

λ/4 (0 )o

λ/4 (90 )o
λ/2 (22.5 )o

λ/2 (22.5 )o

Pockels cell
retardation:

= 2 voltageϕ θ ∝
θBS

is described in detail in section 7.5. In Fig. 7.8b, three reflectivity functions are plotted,
the optimal switching function (in full curve) and two functions described by Eq. 7.33
above, with two different timings (in dashed and dotted curves). The calculated intensities
captured in the cavity due to the three reflectivity functions of Fig. 7.8b are plotted in
Fig. 7.8a. Although the experimental reflectivity function (dashed curve in Fig. 7.8b) differs
significantly from the ideal case (full curve) the total power coupled into the cavity is hardly
affected (compare the full curve to the dashed curve in Fig. 7.7a). The dotted reflectivity
curve is delayed relative to the dashed reflectivity curve by half the incident pulse width.
Even though this timing error is several timesτcav the resulting loss in coupling efficiency
is rather modest. This robustness against the exact switching function and timing is a very
useful feature for experimental implementation.

7.4 The variable input coupler

In the previous, theoretical, section one of the mirrors of the cavity was assumed to have
a variable reflectivity. In reality the cavity consists of four highly reflecting mirrors (R ≈
0.9985) and the light is coupled into the cavity using the device depicted in Fig. 7.9. The
input coupler consists of a polarizing beam splitter, a Pockels cell (Linos CPC8IM), two
half-wave and two quarter-wave plates. In fact, the quarter-wave plates are not essential
and are absent in the experiment, but are kept in this section for the sake of clarity. The
principle of the input coupler device is as follows: the light circulating in the cavity is
horizontally polarized and is transmitted through the beam splitter. The incident light,
which is coupled into the cavity, is in phase with the cavity mode, has a vertical polarization
and is reflected by the beam splitter. Consequently, the polarization of light just after the
beam splitter makes an angleθ with the horizontal plane. The angleθ depends on the ratio
of the amplitude of the light already inside the cavity and the amplitude of the incident
light (Acav andAin). The combination of Pockels cell and retardation plates acts as a rotator
for linear polarization. The voltage on the Pockels cell is adjusted continuously to a value
which ensures that the polarization at an angleθ is rotated back into the horizontal plane.
Then all the incident light is coupled into the cavity mode with horizontal polarization, no
light is coupled back out. At the end, when no more light impinges on the beam splitter,
the voltage on the Pockels cell is 0, the polarization is not rotated anymore and the cavity
is therefore closed.
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Capturing a light pulse in a short high-finesse cavity

There is a simple correspondence between the rotation angleθ(t) and the equivalent
reflectivityR(t) of a mirror, used in the theory section; it is given by Eq. 7.33 above.

To see that the combination of retardation plates and Pockels cell acts as a polarization
rotator, the polarization is written as a two-component vector(η, ξ). The componentsη
andξ of the polarization vector are the normalized amplitudes of horizontal and vertical
polarization respectively. In this(η, ξ) basis, a half-wave plate, oriented such that its optical
axis makes an angle of22.5◦ with the horizontal plane, has the matrix representation

H =
1
√

2

(
1 1
1 −1

)
. (7.35)

A symmetric phase-shift operator is defined as

P(ϕ) =

(
exp(iϕ/2) 0

0 exp(−iϕ/2)

)
. (7.36)

Eqs. 7.35 and 7.36 are the usual Jones matrices [216]. The Pockels cell is a variable retarder
with retardation angle proportional to the applied voltage. It is now easily verified that the
assembly depicted in Fig. 7.9 is indeed a pure polarization rotator:

P(−π/2) · H · P(2θ) · H · P(π/2) =

(
cosθ sinθ
− sinθ cosθ

)
, (7.37)

whereP(±π/2) are the quarter-wave plates, andP(2θ) the Pockels cell. The rotation angle
θ of the polarization is half the retardation angleϕ of the Pockels cell.

The rotation angle is always chosen such that the output polarization is horizontal; the
device rotates over an angle equal in size but opposite to that of the linearly polarized light
just after the beam splitter.

The optical axes of the two quarter-wave plates are horizontal and vertical respectively.
The quarter-wave plates therefore do not mix the cavity and incident polarizations, but just
apply to each of them an independent phase shift. In the special case that the output polar-
ization is always horizontal, the second quarter-wave plate has no effect, and can therefore
safely be omitted. The first quarter-wave plate can likewise be omitted. Without the first
quarter-wave plate there is a constant phase shift ofπ/2 between the two polarization com-
ponents, from the cavity and incident light. Such a constant phase shift is automatically
accounted for by the locking of the cavity. Only the cavity mode which has a phase shift
of π/2 with the incident light is excited, and this mode has the same properties in a ring
cavity than the in-phase mode. The output polarization of the polarization rotator is still
linear and horizontal but just after the beam splitter the polarization is now elliptical.

Pulsed dye amplifiers, such as the one used in the experiments in section 7.5, rarely
emit Fourier-transform limited pulses. Often a small amount of chirp is present. If this
chirp is known and reproducible it can in principle be compensated for. This compensation
could be done by changing the cavity length while the pulse enters, using a piezo-driven
mirror or by using a second Pockels cell outside of the half-wave plates. Alternatively, one
can argue that a partial compensation of the chirp can be obtained without any additional
elements by choosing the angle of the optical axes of the two half-wave plates in Fig. 7.9
slightly different from22.5◦. If the angle of the two half-wave plates is0◦ the Pockels cell
acts as a pure retarder. At angles of the half-wave plate different than22.5◦ (where a pure
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Figure 7.10: Schema of the experimental setup. The simplified cavity of Fig. 7.3 has been modified by
replacing the variable input couplerMi by a mirror M1, and by adding the Pockels cell-based input
coupler of Fig. 7.9 instead. The polarizing beam splitter is denoted BS, the Pockels cell PC, the two
half-wave platesλ/2, and the Brewster plate BP. PD1 through PD4 are photodiodes for diagnostics
and control. Adjustment of timing for the high-voltage electronic switch HV is made with a 7 m
optical delay line DL, and an adjustable length of cable marked trig 2. The electrical triggers are
printed in dashed lines. In this figure the lenses and telescopes needed for the mode matching of the
signal and reference beams to the cavity are omitted.

polarization rotation takes place) the device in Fig. 7.9 therefore combines the effects of
rotation and retardation. The chirp compensation can have both signs, but is not necessarily
linear, and depends on the precise form of the time dependence ofθ, shown in Eq. 7.34.
The analysis of the case with chirp is rather involved and the experiments we performed
are inconclusive on this matter. Therefore this chirp compensation is not further pursued in
this thesis.

7.5 Our experimental methods

In this section the experimental setup and methods chosen for the practical implementation
of the switching scheme are described. In Fig. 7.10 the experimental apparatus is shown.
The cavity has the geometry of a ring and a length of 0.65 m corresponding toτcav = 2.2 ns
andωFSR = 460 MHz. A cw beam, of 600 mW at a wavelength of 730 nm, from a
titanium:sapphire (Ti:Sa) laser (Coherent 899) is split in two parts. One of the beam from
the Ti:Sa laser, the signal beam, is amplified in a pulsed dye amplifier (Lambda Physik FL
2003) pumped by an excimer laser (Lambda Physik LPX210i). The other beam from the
Ti:Sa laser, the reference beam, serves to lock the cavity. Note that the combination of
Ti:Sa laser and pumped dye amplifier is only one practical way of implementing a pulsed
signal beam and cw reference beam at the same frequency, but other (and more table-top)
pulsed laser sources can be used. The signal beam provides a pulse of 25 ns duration and
a, tunable, characteristic energy around 50µJ to be captured in the cavity. Both signal
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Capturing a light pulse in a short high-finesse cavity

and reference beams are shifted approximately 150 MHz in frequency using acousto-optic
modulators (AOM’s). A double-pass AOM (AOM2 in Fig. 7.10) is used which allows the
frequency of the reference beam to be varied over about 30 MHz without changing the
direction of the beam. The use of the tunable AOM allows for compensation of small
frequency shifts introduced by the dye amplifier in the signal arm.

One of the cavity mirrors is mounted on a piezo which varies the cavity length in order
to lock the cavity to a resonance for the reference beam. To couple the reference beam into
the cavity, mirrorM2 has a transmission coefficient of 0.5%. The variable input coupler de-
scribed in the previous section is embedded inside the cavity. The Pockels cell is normally
switched off and hence the input coupling device is transparent apart from small absorp-
tion and reflection losses. The combined losses of the cavity mirrors and the intra-cavity
elements limit the finesse of the cavity to about 60. This finesse corresponds to roughly
10% loss or a ring-down timeτr ≈ 10τcav. These comparatively high losses are mainly
due to non-perfect components, particularly the Pockels cell, polarizing beam splitter and
waveplates.

The pulse from the dye amplifier is captured into the cavity using the following proce-
dure: the voltage on the Pockels cell is switched from 0 to 4 kV about 1µs before the firing
of the excimer laser (trig1 in Fig. 7.10). The 4 kV voltage corresponds to a retardation of
the Pockels cell of approximatelyπ and therefore to aπ/2 polarization rotation,i.e., a fully
open cavity (see section 7.4). A small part of the incident pulse is picked off and led to
a fast photodiode (PD3) to serve as a trigger for a fast high-voltage switch. This voltage
switch, which is described in detail below, brings back the voltage on the Pockels cell from
4 to 0 kV in a precisely timed fashion in approximately 10 ns: about half of the pulse du-
ration. The timing of the second trigger signal relative to the arrival time of the amplified
pulse at the polarizing beam splitter in the cavity is determined by a variable cable length
(trig2 in Fig. 7.10) combined with an optical delay line of about 7 m.

The reference beam traverses the cavity in the opposite direction than the pulsed signal
beam. When the Pockels cell is switched off the cavity is locked to one of its resonances for
the reference beam using the Hänsch-Couillaud method [217]. Since the phase of the cavity
mode is set by the input beam, in such a way that after one round-trip the cavity mode and
the input beam interfere constructively, any necessary stationary phase difference between
the two beams is automatically taken care of by the locking. The time constant of the lock-
ing scheme is of the order of 100µs. The Pockels cell is briefly switched on and off for
about 1µs to capture the pulse. The slow dynamics of the locking ensures that the cavity
stays at resonance during the necessary time for the capture. The astigmatism of the cavity
resulting from the two curved mirrorsM3 and M4 is compensated [218] by a 1-cm-thick
BK7 plate at Brewster angle. This Brewster plate can be replaced by a frequency-doubling
crystal of similar length and refractive index. The pulsed amplification scheme introduces
a frequency shift of typically 20 MHz in the output of the signal beam. This frequency shift
varies and increases gradually with aging dye. To ensure that the center frequency of the
signal coincides with the reference frequency, the spectrum of both beams are compared
using a confocal etalon withωFSR= 150MHz andF = 100, and the difference is compen-
sated using the double-pass AOM. The length of the confocal etalon is fixed. In order to
measure a power spectrum by using this etalon, the frequency of the Ti:Sa laser is slowly
scanned. The amplified pulses are sent through the etalon simultaneously with the refer-
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Figure 7.11: Schematics of the high-voltage
switching electronics for the Pockels cell.
The triggerstrig.1 and trig.2 are TTL level
signals for on and off switching.trig.1 also
triggers the excimer laser andtrig.2 is taken
directly from the fast photodiode PD3 mea-
suring the amplified pulse.

trig. 1 trig. 2

2 kΩ+4 kV
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50 Ω
Pockels cell
20 pF

1 nF

ence beam. The pulsed light is detected using ‘sample and hold’ electronics synchronized
with the firing of the excimer laser. The scan time over one free spectral range of the etalon
is about 10 s. The long scan time ensures sufficient spectrum resolution when firing the
excimer laser at 10 Hz or higher.

The confocal etalon is also used to measure the spectrum of the light that is stored in
the cavity. The leakage through one of the high-reflecting cavity mirrors (M4 in Fig. 7.10)
is led to the etalon. Only about10−4 of the intensity of light present in the cavity leaks
out throughM4 but this leakage is sufficient to perform a frequency measurement through
the etalon. Again the frequency of the Ti:Sa laser is scanned, affecting both reference and
signal beams in the same way. The cavity lock follows the scan of the reference beam
frequency and hence the cavity also stays at resonance for the amplified pulsed signal.

The last part of the experimental setup is the implementation of the voltage switching of
the Pockels cell, illustrated in Fig. 7.11. The switching is done by combining two fast solid-
state high-voltage switches. Both switches act as effective short-circuit upon a TTL trigger.
The first one,trig.1 (Behlke HTS50-06) switches the voltage across the Pockels cell from
0 to 4 kV. The switchingtrig.1 and the excimer laser are triggered simultaneously. The
actual firing of the excimer laser is delayed with respect to this trigger by about 1.3µs with
a pulse to pulse fluctuation of 0.2µs. When the excimer laser is fired, the optical signal
is used to trigger a second fast switch (Alphalas HVS 4000-F) which short-circuits the
Pockels cell. This second switch has an almost instantaneous (within a few nanoseconds)
and practically jitter-free response. The second switch, being driven by a TTL level trigger,
is rather sensitive to high-voltage cross talk from the first switch and initially operated at
unwanted moments. This problem was solved by empirically adding resistors and parallel
capacitors. These extra electrical components also served to set the time constant, with
which the voltage across the Pockels cell drops, to the desired value of 10 ns, about half
the pulse duration. The additional circuit elements have been omitted in Fig. 7.11 for
simplicity. The voltage on the Pockels cell is an exponential decrease from 4 to 0 kV with
a time constantτs of typically 10 ns. The resulting effective reflectivity is obtained using
Eq. 7.33 and is depicted as the dashed curve in Fig. 7.8b.
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7.6 Experimental results

To experimentally corroborate the ideas outlined in the first sections of this chapter, two
types of experiments were performed: in the time domain and in the frequency domain.
The light present inside the cavity can be monitored as a function of time by observing the
leakage light throughM4 on a fast photodiode (PD2). Alternatively, the power spectrum of
this leakage light can be obtained by guiding it through the confocal etalon, integrating the
pulse and detecting its magnitude as a function of the laser frequency.

The relative frequency of the reference and signal beams and the timing of triggering
of the second high voltage switch in Fig. 7.11 are empirically varied until the light in the
cavity has its power maximized and its bandwidth minimized. Introducing a deviation from
22.5◦ of the angle of the half-wave plates relative to the horizontal direction to compensate
a possible chirp had little effect. Consequently all measurements were taken at the original
orientation of these wave plates. Once the optimal setting was found the situation was stable
and the pulse-to-pulse reproducibility proved sufficient to ensure a reliable operation.

In Fig. 7.12a and 7.12b the intensity of light leaking throughM4 is shown in the time
and frequency domain, respectively. The pulse stored in the switched cavity is compared
to the pulse as it is admitted. The latter is measured with an open input coupler (Pockels
cell at constantV = 4 kV) and the cavity blocked so the light can not complete the first
round-trip. The blocked-cavity signal has exactly the temporal profile of the pulse from the
amplifier. The amplitude of the blocked-cavity signal is smaller because the beam splitter
rejects a part of the incoming beam, some additional losses in the cavity further reduces
it and only the small leakage throughM4 is measured. By taking the leakage light from
the blocked cavity as an effective definition of the input pulse, the effect of rejection by
the polarizing cube and the leakage ratio are eliminated, and the amplifying effect of the
cavity can be directly determined. As can be seen in Fig. 7.12a the signal in the cavity
(2) becomes approximately a factor 10 bigger than the incident pulse (1) if the cavity is
switched, and optimized for maximum signal. In Fig. 7.12a the signal (3) leaking from a
cavity with a fixed reflectivityR= 50%(i.e., a fixed voltage on the Pockels cellV = 2 kV)
is also shown. For fixed input coupling this choice of reflectivity couples the maximum
energy into the cavity. From Fig. 7.12a the pulse is found to be coupled into the switched
cavity with about 90% efficiency. Indeed, within our definition of the input pulse, the peak
intensity in transmission is characteristic of the intensity inside the cavity. The incident
energy is the integral of the incident pulse. The energy in the cavity is the intensity in the
cavity during one round-trip. The efficiency of the pulse capture is the ratio of the peak
intensity in the switched case multiplied byτcav and the integral of the incident pulse.

In Fig. 7.12b the power spectrum of the captured pulse is shown. Four cases are com-
pared: the power spectrum of the pulsed light before it enters the cavity (1), the spectrum
after the switched cavity (2), and two spectra for a cavity with fixed effective reflectivity
(3,4): R= 95%(V = 0.3 kV) and 68% (V = 1.5 kV), respectively. The three spectra mea-
sured after the light has passed the cavity are taken in identical way using the light leaking
through mirrorM4 and their amplitude can be directly compared. The spectrum of the pulse
before it enters the cavity is measured directly and is consequently more intense. The spec-
trum of the incident pulse has been scaled in Fig. 7.12b to a size convenient for comparing
its spectral width to the other spectra. In the case of a large fixedR the bandwidth of the
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7.6 Experimental results

Figure 7.12: Characteristics of a long light pulse captured in a cavity. In (a), the leakage light of the
captured pulse in the cavity (2) is shown versus time. The time trace obtained from the incident pulse
multiplied by 10 (1) and a trace for a stationary cavity (3) withR= 50% are shown for comparison.
In (b) the power spectrum of the incident pulse (1) is compared to that obtained for a switched cavity
(2) and a cavity with two different, constant, effective reflectivities (3,4) of the input coupler. The
switched cavity clearly captures both ahigher powerand narrower bandwidththan the cavity with
fixed reflectivity. The spectral widthδω of each spectrum is given for quantitative comparison. The
scale of the lower three spectra (2,3,4) can be directly compared. The reference spectrum (1) is
measured before the cavity, therefore its scale can not be compared. The zero of the frequency scale
is set arbitrarily at the position of the left transmission peak.
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light is small but so is the overall signal. This high-reflectivity case corresponds to filtering
out all but the resonant frequency components of the pulse. For smaller but still fixedR the
captured power is bigger but so is the bandwidth. In the switched case, both the maximum
bandwidth reduction and the largest signal is obtained, when the whole pulse is captured.

When comparing the switched case to that of fixed input coupling it is useful to consider
the ratio power/bandwidth as a figure of merit. For fixed voltage the figure of merit shows a
broad maximum in the range 1.5–2 kV. The power spectra such as those shown in Fig. 7.12b
indicate an improvement of about a factor 2 in this figure of merit when comparing the
switched case to the best fixed input case.

In principle the figure of merit of the previous paragraph should carry over to the time
domain, in other words the time trace for the switched case is expected to have a longer tail.
However, the results of Fig. 7.12a in the time domain indicate a small difference between
the switched case and the optimal choice of fixed reflectivity. This apparent discrepancy
between time and frequency domain can be understood by realizing that the experimental
pulse is not Fourier-transform limited. The duration of the incident pulse is larger than that
resulting from the Fourier transform of the spectrum, making the time-domain signals more
sensitive to the rather large losses of the cavity. By making a comparison to the theoretical
predictions for the case of 10% loss, for the switched case in Fig. 7.7a and forR = 80%
in Fig. 7.7b the difference is found to be approximately as small as in the experiment, for
comparable parameters.

In Fig. 7.13 the experimental results are summarized in a more quantitative way. It
can be seen from Fig. 7.13b that the integral of the power spectrum and hence the total
power coupled into the cavity, in the fixed-voltage case, goes through a maximum at about
R = 50% (V = 2 kV) but is always below the power in the switched case. The band-
width, in Fig. 7.13a, on the other hand is always bigger for a fixed reflectivity than in the
switched case, approaching it only for large reflectivity (V → 0), as expected. The theoreti-
cal curve shown in Fig. 7.13a is from Eqs. 7.15 and 7.17 with the measured pulse spectrum
approximated by a Lorentzian. The expected bandwidth in the cavity depends on only two
parameters: the spectral widthΓ = 26 MHz of the incident pulse and the cavity loss rate
of 10% (orα2 = 0.9). Both are determined experimentally in independent measurements.
The incident bandwidthΓ is measured explicitly andα2 follows from the measured cavity
finesse using the reference beam. The data in Fig. 7.13a have been deconvoluted with the
instrumental response of the confocal etalon which adds about 1.5 MHz. The good agree-
ment between theory and experiment in Fig. 7.13a gives confidence in the analysis. The
total power versus voltage is slightly harder to analyze because it depends more critically
on pulse shape and spectral properties. In Fig. 7.13b the experimental results are compared
to a numerical calculation for a Gaussian pulse with the same parameters as in Figs. 7.7
and 7.8. The experimentally observed maximum occurs at a somewhat different value than
in the theoretical prediction but the height of the maximum compared to the switched case
is similar. It is likely that the quantitative differences between experiments and theory are
due to the fact that the experimental pulse is not Gaussian, and not transform limited.
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Figure 7.13: Summary of experimental results. In (a) the width of the power spectrum is shown
versus fixed reflectivity of the input coupler (open circles) and compared to the switched case (open
square). The arrow through the square indicates that the reflectivity is swept from 0 to 1 as the pulse
is admitted. The top axis gives the corresponding voltage on the Pockels cell. The dotted curve
is the theory for the fixed reflectivity case. In (b) the total power inside the cavity, or integral of
the power spectrum, normalized to the switched case, is shown versus the input coupler reflectivity
(filled circles). The filled square corresponds to the switched case. The dotted curve is a numerical
calculation. Capturing a pulse in a cavity allows the smallest bandwidth simultaneously with the
highest power to be obtained compared to a stationary cavity.
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7.7 Conclusions

A scheme to combine high power and narrow bandwidth was proposed. A light pulse can
be fully captured in short cavity of high finesse, provided the input reflectivity of the cav-
ity is matched to the shape of the incident pulse. The pulse capture is very robust against
variations from the optimal input reflectivity function. Experimentally, the implementation
of this scheme was done by switching the voltage across a Pockels cell, effectively varying
the coupling of the polarized incident beam with the cavity mode of crossed polarization.
The capture of a light pulse in a short high-finesse cavity has been accomplished. A light
pulse has been compressed in the frequency domain and at the same time its peak intensity
increased. The present experiment can be seen as a proof of principle of the scheme. There
is considerable room for improvement through careful selection of dedicated quality com-
ponents resulting in smaller losses. We believe that in order to realize reliable applications
an on-chip or integrated implementation using fiber optics is desirable as well as practically
viable. An improvement on the quality of the scheme implementation would also open the
way to a useful application in reversible capture and release experiments.
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[90] P. M. Johnson, B. P. J. Bret, J. Gómez Rivas, J. J. Kelly, and A. Lagendijk,Anisotropic

diffusion of light in a strongly scattering material, Phys. Rev. Lett.89, 243901 (2002).
[91] A. F. van Driel, B. P. J. Bret, D. Vanmaekelbergh, and J. J. Kelly,Hot carrier luminescence

during porous etching of GaP under high electric field conditions, Surf. Sci.529, 197 (2003).
[92] B. P. J. Bret, T. L. Sonnemans, and T. W. Hijmans,Capturing a light pulse in a short high-

finesse cavity, Phys. Rev. A68, 023807 (2003).
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[179] D. S. Wiersma, J. Ǵomez Rivas, P. Bartolini, A. Lagendijk, and R. Righini,Reply to ‘Local-

ization or classical diffusion of light?’, Nature (London)398, 207 (1999).
[180] V. P. Romanov and A. N. Shalaginov,Radiation transfer equation in nematic liquid crystals,

Opt. Spectrosc.64, 774 (1988).
[181] V. P. Romanov and A. N. Shalaginov,Fluctuations and light scattering in thin smectic films,

Phys. Rev. E48, 1073 (1993).
[182] B. A. van Tiggelen, R. Maynard, and A. Heiderich,Anisotropic light diffusion in oriented

nematic liquid crystals, Phys. Rev. Lett.77, 639 (1996).
[183] H. Stark and T. C. Lubensky,Multiple light scattering in nematic liquid crystals, Phys. Rev.

Lett. 77, 2229 (1996).
[184] A. Heiderich, R. Maynard, and B. A. van Tiggelen,Multiple light scattering in ordered ne-

matic liquid crystals, J. Phys. II (France)7, 765 (1997).
[185] B. A. van Tiggelen and H. Stark,Nematic liquid crystals as a new challenge for radiative

transfer, Rev. Mod. Phys.72, 1017 (2000).

134



References

[186] M. H. Kao, K. A. Jester, A. G. Yodh, and P. J. Collings,Observation of light diffusion and
correlation transport in nematic liquid crystals, Phys. Rev. Lett.77, 2233 (1996).

[187] H. Stark, M. H. Kao, K. A. Jester, T. C. Lubensky, A. G. Yodh, and P. J. Collings,Light
diffusion and diffusing-wave spectroscopy in nematic liquid crystals, J. Opt. Soc. Am. A14,
156 (1997).

[188] D. S. Wiersma, A. Muzzi, M. Colocci, and R. Righini,Time-resolved anisotropic multiple
light scattering in nematic liquid crystals, Phys. Rev. Lett.83, 4321 (1999).

[189] D. S. Wiersma, A. Muzzi, M. Colocci, and R. Righini,Time-resolved experiments on light
diffusion in anisotropic random media, Phys. Rev. E62, 6681 (2000).

[190] R. Sapienza, S. Mujumdar, C. Cheung, A. G. Yodh, and D. Wiersma,Anisotropic weak local-
ization of light, Phys. Rev. Lett.92, 033903 (2004).

[191] M. S. Patterson, B. Chance, and B. C. Wilson,Time-resolved reflectance and transmittance
for the non-invasive measurement of tissue optical properties, Appl. Opt.28, 2331 (1989).

[192] J. Huang, N. Eradat, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H. Baughman,
Anomalous coherent backscattering of light from opal photonic crystals, Phys. Rev. Lett.86,
4815 (2001).

[193] A. F. Koenderink,Emission and transport of light in photonic crystals, Ph.D. thesis, Univer-
sity of Amsterdam, 2003, http://www.wavesincomplexmedia.com.

[194] A. F. Koenderink and W. L. Vos,Optical loss due to intrinsic structural variations of photonic
crystals, (2005), submitted, available at http://arxiv.org/abs/physics/0406052.

[195] P. Sebbah, B. Hu, A. Z. Genack, R. Pnini, and B. Shapiro,Spatial-field correlation: the
building block of mesoscopic fluctuations, Phys. Rev. Lett.88, 123901 (2002).

[196] R. Pnini and B. Shapiro,Fluctuations in transmission of waves through disordered slabs,
Phys. Rev. B39, 6986 (1989).

[197] V. Emiliani, F. Intonti, M. Cazayous, D. S. Wiersma, M. Colocci, F. Aliev, and A. Lagendijk,
Near-field short-range correlation in optical waves transmitted through random media, Phys.
Rev. Lett.90, 250801 (2003).

[198] C. J. Oton, Z. Gaburro, M. Ghulinyan, L. Pancheri, P. Bettotti, L. Dal Negro, and L. Pavesi,
Scattering rings in optically anisotropic porous silicon, Appl. Phys. Lett.81, 4919 (2002).

[199] M. P. van Albada, M. B. van der Mark, and A. Lagendijk,Observation of weak localization of
light in a finite slab: anisotropy effects and light path classification, Phys. Rev. Lett.58, 361
(1987).

[200] D. S. Wiersma, S. Gottardo, R. Sapienza, S. Mujumdar, S. Cavalieri, M. Colocci, R. Righini,
L. Dal Negro, C. Oton, M. Ghulinyan, Z. Gaburro, L. Pavesi, F. Aliev, P. M. Johnson, A.
Lagendijk, and W. L. Vos, inWave scatering in complex media: from theory to applications,
edited by B. A. van Tiggelen and S. Skipetrov (Kluwer, Dordrecht, 2003).

[201] M. J. Stephen and G. Cwilich,Rayleigh scattering and weak localization: effects of polariza-
tion, Phys. Rev. B34, 7564 (1986).

[202] L. V. Kuzmin, V. P. Romanov, and L. A. Zubkov,Coherent backscattering from anisotropic
scatterers, Phys. Rev. E54, 6798 (1996).

[203] H. K. M. Vithana, L. Asfaw, and D. L. Johnson,Coherent backscattering of light in a nematic
liquid crystal, Phys. Rev. Lett.70, 3561 (1993).

[204] M. P. van Albada, M. B. van der Mark, and A. Lagendijk,Polarization effects in weak local-
ization of light, J. Phys. D21, 28 (1988).

[205] G. Labeyrie, F. de Tomasi, J.-C. Bernard, C. A. Müller, C. Miniatura, and R. Kaiser,Coherent
backscattering of light by cold atoms, Phys. Rev. Lett.83, 5266 (1999).

[206] F. Brandi, I. Velchev, W. Hogervorst, and W. Ubachs,Vacuum-ultraviolet spectroscopy of Xe:
hyperfine splittings, isotope shifts, and isotope-dependent ionization energies, Phys. Rev. A
64, 032505 (2001).

135



References

[207] R. Zinkstok, E. J. van Duijn, S. Witte, and W. Hogervorst,Hyperfine structure and isotope
shift of transitions in Yb I using UV and deep-UV cw laser light and the angular distribution
of fluorescence radiation, J. Phys. B35, 2693 (2002).

[208] G. D. Boyd and D. A. Kleinman,Parametric interaction of focused gaussian light beams, J.
Appl. Phys.39, 3597 (1968).

[209] H. Park, J. Lee, J.-H. Lee, and J.-S. Chang,Selective photoionization of the ytterbium atom
by coherent two-photon excitation, Phys. Rev. A53, 1751 (1996).

[210] S. K. Borisov, M. A. Kuz’mima, and V. A. Mishin,A study of isotopically selective photoion-
ization of ytterbium atoms for laser isotope separation, J. Russ. Laser Res.17, 332 (1996).

[211] A. Siegman,Lasers(University Science Books, New York, 1986).
[212] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin,Storage of light

in atomic vapor, Phys. Rev. Lett.86, 783 (2001).
[213] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau,Observation of coherent optical information

storage in an atomic medium using halted light pulses, Nature (London)409, 490 (2001).
[214] M. F. Yanik and S. Fan,Stopping light all optically, Phys. Rev. Lett.92, 083901 (2004).
[215] M. F. Yanik and S. Fan,Stopping and storing light coherently, Phys. Rev. A71, 013803

(2004).
[216] G. R. Fowles,Introduction to modern optics(Dover, New York, 1968).
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Summary

This thesis presents an experimental study on multiple light scattering, with the necessary
introductions: theoretical background and sample preparation. The emphasis is put on the
effects of the multiple scattering ofwaves, i.e., where interference effects exist and are
significant, in the search for Anderson localization.

The principles of multiple-scattering theory are presented. Without interference, when
the scattering strength of the medium increases, the propagation of light turns from bal-
listic via single scattering to the diffusion regime. In a stationary measurement, such as
performed with a continuous-wave laser or a light bulb, diffusion is characterized by the
mean free path̀, the average distance for light to scatter in all directions. In a dynamic
measurement, such as performed with a pulsed-laser source and a time-resolved detection,
the characteristic quantity is the diffusion constant (which is a length times a speed).

There are various effects of interference in multiple scattering, but we focus on the en-
hanced backscattering (EBS). The EBS arises from constructive interference of reciprocal
(or time-reversed) paths in ensemble-averaged disordered media. The light reflected from
a diffusive sample has a typical broad Lambertian shape on top of which a narrow cone at
exact backscattering is present. The width of this EBS cone is characterized by the mean
free path and the wavelength of the lightλ. The top of the EBS cone gives information
about the coherence lengths inside the material: the finite size, the absorption length, and
the localization length.

The regime of multiple light scattering is studied in a porous semiconductor, gallium
phosphide (GaP), known at present as the strongest scattering material for visible light
(around 633 nm). A wafer of GaP, doped with sulfur, is electrochemically etched to pro-
duce a porous structure of homogeneous thickness. The understanding of the chemistry
of this etching process is presented. The properties of the porous structure depend mainly
on the doping concentration of the wafer and the electrical voltage applied during etching.
The pores can be made with a diameter in the range 50 to 200 nm, thus smaller than the
wavelength of light. The porous samples are then further photochemically etched, in order
to remove a thin layer of bare GaP remaining on top of the porous structure after elec-
trochemical etching. The removal of this top-layer simplifies the interpretation of optical
measurements on the porous samples. The porous samples can also be further chemically
etched, in order to homogeneously increase the average diameter of the pores, toward the
wavelength of light.

The three types of samples, after electrochemical, photochemical and chemical etching,
have been characterized by several optical techniques, among which the total transmission,
the EBS, and the angular-resolved transmission measurements. A very important parameter
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Summary

of diffusive samples is the effective refractive index, which modifies both the wave vector of
light inside the material and the internal reflection at the interface. A theory which carefully
treats the boundary conditions of a diffusive medium is presented. This theory predicts that
the angular-resolved transmission is characteristic of the refractive index contrast at the
interface between the diffusive medium and the outside medium. The refractive index of
strongly scattering porous samples, after photochemical etching, is determined by fitting
the theory to the angular-resolved transmission data. The refractive index as a function
of porosity in the domain of strong scattering is experimentally studied. The effective
medium theories, rigorously derived only in the weak-scattering limit, fail to describe our
measurements of the refractive index.

In the search for Anderson localization of light, very strongly scattering samples are
produced by electrochemical etching. The optical absorption length is shown to exceed
the thickest samples produced, namely 250µm. The strongest scattering samples are made
from GaP wafers of doping concentrationN = 2–5×1017 cm−3, electrochemically etched at
the highest possible voltage. The average diameter of the pores in a sample is increased by
chemical etching. The scattering strength of certain samples increases after chemical etch-
ing. A careful study of the total transmission and the width and rounding of the EBS cone
shows, before and after chemical-etching, a very good agreement of the measurements with
the diffusion regime. Within the scope of this thesis, no effect which can be attributed to
Anderson localization has been recorded, even for very strongly scattering samples where
`/2πλ ' 3.5.

The electrochemical etching produces a porous structure with oriented pores: pores
grow in the direction normal to the surface of the GaP wafer. The geometrical anisotropy in-
duces anisotropic diffusion. An anisotropic hopping model and subsequent diffusion theory
with an anisotropic diffusion constant tensor and an isotropic mean free path is presented.
The anisotropy in both stationary and dynamic measurements are predicted to depend on
the components of the diffusion constant tensor. Measurements on anisotropic samples
are indeed anisotropic for stationary and dynamic diffusion, and EBS. The anisotropy in
the diffusion constant tensor, independently determined from these three optical measure-
ments, is consistent. Porous GaP displays both strong scattering and strong anisotropy (the
ratio of the diffusion constant components is about 4).

The last part of this thesis deals with a subject differing from multiple light scattering.
The subject of the full capture of a light pulse inside a short cavity is considered, and can
be seen as a macroscopic equivalent of the switching of an (Anderson) localized state. In
a short cavity, the bandwidth of the incident pulse is decreased, according to the finesse
of the cavity, at the expense of the incoupling efficiency. By dynamically adapting the
reflectivity of the input coupler to the shape of the incident pulse, the light reflected from
the cavity can be made to vanish by destructive interference. When no light is reflected
off the cavity, all the incident power is coupled inside the cavity, within a single mode of
narrow bandwidth. A theoretical description of the pulse capture inside a short high-finesse
cavity is presented. A practical implementation of the mirror with variable reflectivity is
made by using a Pockels cell and polarization optics, along with a fast high-voltage switch.
The experimental results in the frequency-domain show both a higher power and a narrower
bandwidth of the light pulse captured in the cavity, compared to the same setup with any
constant reflectivity of the input coupler.
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Samenvatting

Meervoudige verstrooiing van
licht in poreus gallium fosfide

In dit proefschrift wordt een experimenteel onderzoek van meervoudige verstrooiing
van licht gepresenteerd, met de noodzakelijke introducties: de theoretische achtergrond en
de monsterpreparatie. De nadruk is op de effecten van meervoudige verstrooiing vangol-
ven, waar interferentie bestaat en belangrijk is, in de zoektocht naar Anderson lokalisatie.

De principes van de theorie van meervoudige verstrooiing worden uitgelegd. Zonder
interferentie, als de kracht van de verstrooiing van een media toeneemt, verandert de voort-
planting van licht van ballistisch naar enkele verstrooiing, tot naar het diffusie-regime. In
een stationaire meting, zoals gedaan met een continue laser of een gloeilamp, wordt de
diffusie gekarakteriseerd door de gemiddelde vrije weglengte`, oftewel de gemiddelde af-
stand dat licht nodig heeft om in alle richtingen te verstrooien. In een dynamische meting,
zoals gedaan met een gepulste laserbron en een tijdopgeloste detectie, is de karakteristieke
grootheid de diffusieconstante (die een lengte keer een snelheid is).

De effecten van interferentie in meervoudige verstrooiing zijn divers, maar we bena-
drukken hier de terugstrooikegel (TSK). De TSK komt door de constructieve interferentie
van wederkerige (of tijdomgekeerd) paden in ensemble-gemiddelde wanordelijke media.
Het gereflecteerde licht van een diffuus monster heeft een typische Lambertiaanse vorm
waarop een nauwe kegel staat in de precieze terugstrooirichting. De breedte van die TSK
is gekarakteriseerd door de gemiddelde vrije weglengte en de golflengte van het lichtλ.
De top van de TSK geeft informatie over de coherentielengten in het materiaal: de eindige
dikte, de absorptielengte, en de lokalisatielengte.

Het regime van meervoudige verstrooiing van licht is in een poreuze halfgeleider, gal-
lium fosfide (GaP), bestudeerd, die tegenwoordig bekend staat als het sterkst verstrooiende
materiaal voor zichtbaar licht (rond 633 nm). Een wafer van GaP, gedoteerd met zwavel,
is electrochemisch geëtst om een poreuze structuur met gelijkmatig dikte te maken. De
chemie van die etsproces wordt besproken. De eigenschappen van de poreuze structuur
hangen allereerst af van de dotering van de GaP wafer en de spanning die tijdens etsen is
aangelegd. De poriën zijn gemaakt met een maat tussen 50 en 200 nm, en dus kleiner dan
de golflengte van het licht. De poreuze monsters zijn daarna fotochemisch geëtst om een
dunne toplaag te verwijderen, die op de poreuze laag overblijft na het electrochemische
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etsen. De verwijdering van die toplaag vereenvoudigt de interpretatie van de optische me-
tingen aan de poreuze monsters. De poreuze monsters kunnen ook extra chemisch geëtst
worden, zodat de gemiddelde doorsnede van de poriën gelijkmatig toeneemt, tot dicht bij
de golflengte van het licht.

Drie typen van monsters, na electrochemische, fotochemische, en chemische etsen, zijn
gekarakteriseerd door enkele optische technieken, met name de totale transmissie, de TSK,
en de hoekopgeloste transmissiemetingen. Een heel belangrijke parameter van de diffu-
se monsters is de effectieve brekingindex, waarvan zowel de golfvector van licht in het
materiaal als de interne reflectie aan het oppervlak afhangen. Een theorie wordt gepresen-
teerd die de randvoorwaarden van een diffuus medium zorgvuldig behandelt. Deze theorie
voorspelt dat de hoekopgeloste transmissie wordt gekarakteriseerd door het brekingsindex-
contrast van het oppervlak tussen het diffuse en het buitenmedium. De brekingsindex is
experimenteel onderzocht als functie van porositeit in het domein van sterke verstrooiing .
De effectieve-mediumtheorieën, zorgvuldig afgeleid in de limiet van zwakke verstrooiing ,
beschrijven onze metingen van brekingsindex niet goed.

In de zoektocht naar Anderson lokalisatie van licht, zijn heel sterk verstrooiende mon-
sters gemaakt door middel van electrochemische etsen. De optische absorptielengte is lan-
ger dan de dikste monsters, namelijk 250µm. De sterkst verstrooiende materialen zijn
gemaakt van GaP wafers met doteringN = 2–5× 1017 cm−3, en electrochemisch geëtst op
de hoogste mogelijke spanning. De gemiddelde doorsnede van de poriën in een monster
neemt toe met chemische etsen. De verstrooiingkracht van sommige monsters neemt toe
met het toepassen van chemische etsen. Een zorgvuldige bestudering van de totale trans-
missie en de breedte en afronding van de TSK toont, voor en na chemische etsen, een heel
goede overeenstemming van de metingen met het diffusie-regime. Binnen de ruimte van
dit proefschrift is geen effect gemeten, dat door Anderson lokalisatie veroorzaakt kan zijn,
zelfs niet voor heel sterk verstrooiende monsters, waar2π`/λ ' 3.5.

Het electrochemische etsen maakt een poreuze structuur met gerichte poriën: porïen
groeien in de richting loodrecht aan het oppervlak van de GaP wafer. De geometrische
anisotropie veroorzaakt anisotrope diffusie. Een anisotroop sprongmodel en de daaruitvol-
gende diffusie-theorie met een anisotrope diffusieconstante tensor en isotrope gemiddelde
vrije weglengte wordt afgeleid. De anisotropie in beide stationaire en dynamische metin-
gen zijn voorspeld afhankelijk te zijn van de componenten van de diffusie-tensor. Metingen
aan anisotrope monsters zijn inderdaad anisotroop voor stationaire en dynamische diffusie,
en voor TSK. De anisotropie in de diffusie-tensor, als gemeten van deze drie onafhankelij-
ke optische metingen, is consistent. Poreus GaP toont zowel sterke verstrooiing als sterke
anisotropie (de verhouding van de diagonale elementen van de diffusie-tensor is rond 4).

De laatste deel van dit proefschrift pakt een onderwerp aan dat verschilt van meervoudi-
ge verstrooiing van licht. Het onderwerp van het volledige opslaan van een lichtpuls binnen
een korte trilholte wordt behandelt. Dit verschijnsel kan gezien worden als een macrosco-
pisch equivalent van de schakeling van een (Anderson) gelokaliseerde toestand. In een
korte trilholte neemt de bandbreedte van de inkomende puls af volgens de finesse van de
trilholte, ten koste van de inkoppeling efficiëntie. Door dynamische schakeling van de re-
flectiviteit van de invoerkoppelaar volgens de vorm van de inkomende puls, kan de reflectie
van de trilholte worden voorkomen door destructieve interferentie. Als geen licht door de
trilholte wordt gereflecteerd, wordt het gehele inkomende vermogen opgenomen in de tril-
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holte, binnen een enkele toestand met nauwe bandbreedte. Een theoretische beschouwing
van het vangen van de puls in een kort trilholte met een hoge finesse wordt gegeven. Een
praktische implementatie van de inkoppelspiegel met variabele reflectiviteit is doorgevoerd
met een Pockels cel en polarisatie-optica, samen met een snelle schakeling van de hoog-
spanning. De proefresultaten, gemeten als functie van frequentie, tonen tegelijk een hoger
vermogen en nauwere bandbreedte van het opgenomen licht, in vergelijking met dezelfde
opstelling maar met een willekeurige constante reflectiviteit van de invoerkoppelaar.

141





Acknowledgements

This is the last, and most important, part of my thesis. All the physics I wrote in this book
hardly reflects what I have experienced and learned during these last four years. It is also
the time to thank all the people without whom my thesis would be but a blank page.

Allereerst wil ik mijn promotor, Ad Lagendijk, van harte bedanken. Jouw inzicht in
wetenschap, jouw kritisch ondersteuning, maar ook jouw manier om een baas te zijn, en
om de vuist op de tafel te slaan, waren allen inspirerend. Het was niet altijd makkelijk
om met jou te werken, maar altijd ontzettend leerzaam. Ik ben met jou en de groep naar
Enschede verhuisd, en dat zou ik nog een keer doen als het nodig zou zijn. Willem Vos
(le renard?), medebestuurder van ons groep COPS maar zeker ook vriend, dank ik voor
het, onverwacht, uitnodiging om te komen solliciteren in Amsterdam. Zonder jou was ik
gewoon niet in de groep gekomen om te promoveren, en had ik ook niet zo veel geleerd.

Mijn primair onderzoek heb ik gedaan met mijn mede-etsers: Jaime, Willem en Patrick.
Jaime, je hebt mij alles geleerd over poreus GaP, over de optische en etsen opstellingen, jij
had verdiend om lokalisatie van licht te meten. Willem, bedankt voor de monsters en jouw
constante stimulering: ‘Is je proefschrift al af?’. Patrick, your idea of making anisotropic
samples proved very fruitful, as were other discussions about juggling and unicycling.

Met Tom heb ik over een ander ontwerp en opstelling gewerkt en geknutseld, die tot
mijn laatste hoofdstuk hebben geleid. Bedankt voor dit heel aardige experiment, en voor
mijn ontdekking van sportief klimmen. Allard wil ik bedanken voor de lange en diepe
discussies die uit een kleine vraag zijn gekomen, en ook voor de ondersteuning wanneer
mijn kegelopstelling verkouden was van luchtvochtigheidfluctuaties.

Praktische hulp heb ik van veel verschillende mensen gekregen, in Enschede en in Am-
sterdam. Cock, vrolijke meester van het COPS-lab, de vijand van dubbelzijdig plakband.
Raymond, onze manager en anti-nerd. Karen voor de administratie die wij altijd liever
niet zelf doen. Bas de computerbaas. Onze buurgroep de werkplaats, en in het bijzonder
Klaas voor de leuke uren van knutselen, de altijd perfecte nabewerking, en de gezellige
discussies. Wim, de meester van het Amsterdamse lab, en een van de beste reden voor de
groep om in het WZI te blijven. Mariet die alle administratie tussen mijn verhuizing naar
Amsterdam en de verhuizing naar Enschede heeft geregeld.

Met de electro-chemie groep uit Utrecht heb ik goede samenwerking gehad. Bedankt
Floris, John et Daniël.
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